Fisher-Porter tube

Last updated
Catalytic hydrogenation in a Fisher-Porter tube Fisher-Porter.jpg
Catalytic hydrogenation in a Fisher-Porter tube

A Fisher-Porter tube or Fisher-Porter vessel is a glass pressure vessel used in the chemical laboratory. The reaction vessel consists of a lipped heavy-wall borosilicate glass tube and a lid made from stainless steel. The lid is sealed with an o-ring and held in place with a coupling.

Contents

The advantage over steel autoclaves is that the progress of a reaction can be followed by eye. The maximum pressure that can be achieved is much lower than that in a metal bomb. For example, typical pressure ratings are 7 bar for a large 335 mL Fisher-Porter vessel and 15 bar for a small 90 mL one, whereas the usual kind of bomb is safe to use with 200 bar. Illustrative applications involve reactions at elevated temperatures using volatile reagents. [1]

Name

The name has become something of a genericised trademark. For decades these flasks used to be made by the Fisher & Porter Company until it became a part of ABB. Nowadays they are sold by Andrews Glass under the Lab-Crest label.

Alternatives

Ace Glass offers thick-walled glass tubes with their proprietary Ace-Thred screw caps. Caps are available to fit gas plunger valves to admit gases under pressure. Similar arrangements are available from Q Labtech and sold through Sigma-Aldrich.

Related Research Articles

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

<span class="mw-page-title-main">Pressure cooking</span> Cooking food under high-pressure steam

Pressure cooking is the process of cooking food under high pressure steam and water or a water-based cooking liquid, in a sealed vessel known as a pressure cooker. High pressure limits boiling and creates higher cooking temperatures which cook food far more quickly.

<span class="mw-page-title-main">Boiler</span> Closed vessel in which fluid is heated

A boiler is a closed vessel in which fluid is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

<span class="mw-page-title-main">Crucible</span> Container in which substances are heated

A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. Although crucibles have historically tended to be made out of clay, they can be made from any material that withstands temperatures high enough to melt or otherwise alter its contents.

<span class="mw-page-title-main">Pipe bomb</span> Improvised explosive device consisting of explosive material within a sealed pipe

A pipe bomb is an improvised explosive device (IED) that uses a tightly sealed section of pipe filled with an explosive material. The containment provided by the pipe means that simple low explosives can be used to produce a relatively large explosion due to the containment causing increased pressure. The fragmentation of the pipe itself creates potentially lethal shrapnel.

<span class="mw-page-title-main">Drink can</span> Container specifically made for liquid such as beverages and usually made of aluminum

A drink can is a metal container designed to hold a fixed portion of liquid such as carbonated soft drinks, alcoholic drinks, fruit juices, teas, herbal teas, energy drinks, etc. Drink cans are made of aluminum or tin-plated steel. Worldwide production for all drink cans is approximately 370 billion cans per year.

<span class="mw-page-title-main">Diving cylinder</span> Cylinder to supply breathing gas for divers

A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.

<span class="mw-page-title-main">Pressure vessel</span> Vessel for pressurised gases or liquids

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

<span class="mw-page-title-main">Gas cylinder</span> Cylindrical container for storing pressurised gas

A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. High-pressure gas cylinders are also called bottles. Inside the cylinder the stored contents may be in a state of compressed gas, vapor over liquid, supercritical fluid, or dissolved in a substrate material, depending on the physical characteristics of the contents. A typical gas cylinder design is elongated, standing upright on a flattened bottom end, with the valve and fitting at the top for connecting to the receiving apparatus.

<span class="mw-page-title-main">Keg</span> Small barrel, commonly used for beer

A keg is a small barrel.

<span class="mw-page-title-main">Laboratory flask</span>

Laboratory flasks are vessels or containers that fall into the category of laboratory equipment known as glassware. In laboratory and other scientific settings, they are usually referred to simply as flasks. Flasks come in a number of shapes and a wide range of sizes, but a common distinguishing aspect in their shapes is a wider vessel "body" and one narrower tubular sections at the top called necks which have an opening at the top. Laboratory flask sizes are specified by the volume they can hold, typically in metric units such as milliliters or liters. Laboratory flasks have traditionally been made of glass, but can also be made of plastic.

A hermetic seal is any type of sealing that makes a given object airtight. The term originally applied to airtight glass containers, but as technology advanced it applied to a larger category of materials, including rubber and plastics. Hermetic seals are essential to the correct and safe functionality of many electronic and healthcare products. Used technically, it is stated in conjunction with a specific test method and conditions of use.

<span class="mw-page-title-main">Pipe (fluid conveyance)</span> Tubular section or hollow cylinder

A pipe is a tubular section or hollow cylinder, usually but not necessarily of circular cross-section, used mainly to convey substances which can flow — liquids and gases (fluids), slurries, powders and masses of small solids. It can also be used for structural applications; hollow pipe is far stiffer per unit weight than solid members.

<span class="mw-page-title-main">Sight glass</span>

A sight glass or water gauge is a type of level sensor, a transparent tube through which the operator of a tank or boiler can observe the level of liquid contained within.

<span class="mw-page-title-main">Schlenk flask</span> Reaction vessel used in air-sensitive chemistry

A Schlenk flask, or Schlenk tube, is a reaction vessel typically used in air-sensitive chemistry, invented by Wilhelm Schlenk. It has a side arm fitted with a PTFE or ground glass stopcock, which allows the vessel to be evacuated or filled with gases. These flasks are often connected to Schlenk lines, which allow both operations to be done easily.

<span class="mw-page-title-main">Ground glass joint</span> Used in laboratories to easily assemble apparatus from parts

Ground glass joints are used in laboratories to quickly and easily fit leak-tight apparatus together from interchangeable commonly available parts. For example, a round bottom flask, Liebig condenser, and oil bubbler with ground glass joints may be rapidly fitted together to reflux a reaction mixture. This is a large improvement compared with older methods of custom-made glassware, which was time-consuming and expensive, or the use of less chemical resistant and heat resistant corks or rubber bungs and glass tubes as joints, which took time to prepare as well.

<span class="mw-page-title-main">Hydrogen tank</span> Container for hydrogen storage

A hydrogen tank is used for hydrogen storage. The first type IV hydrogen tanks for compressed hydrogen at 700 bars were demonstrated in 2001, the first fuel cell vehicles on the road with type IV tanks are the Toyota FCHV, Mercedes-Benz F-Cell and the GM HydroGen4.

<span class="mw-page-title-main">Home canning</span> Process for preserving foods for storage

Home canning or bottling, also known colloquially as putting up or processing, is the process of preserving foods, in particular, fruits, vegetables, and meats, by packing them into glass jars and then heating the jars to create a vacuum seal and kill the organisms that would create spoilage.

<span class="mw-page-title-main">Cannula transfer</span>

Cannula transfer or cannulation is a set of air-free techniques used with a Schlenk line, in transferring liquid or solution samples between reaction vessels via cannulae, avoiding atmospheric contamination. While the syringes are not the same as cannulae, the techniques remain relevant.

A pressure reactor, sometimes referred to as a pressure tube, or a sealed tube, is a chemical reaction vessel which can conduct a reaction under pressure. A pressure reactor is a special application of a pressure vessel. The pressure can be caused by the reaction itself or created by an external source, like hydrogen in catalytic transfer hydrogenation.

References

  1. Kunihiko Takabe; Takashi Yamada; Takao Katagiri; Juntaro Tanaka (1989). "Telomerization of Isoprene with Dialkylamine: N,N-Diethylnerylamine". Org. Synth. 67: 48. doi:10.15227/orgsyn.067.0048.