Fisheries and Marine Ecosystem Model Intercomparison Project

Last updated

The Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP) is a marine biology project to compare computer models of the impact of climate change on sea life. Founded in 2013 [1] as part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), [2] it was established to answer questions about the future of marine biodiversity, seafood supply, fisheries, and marine ecosystem functioning in the context of various climate change scenarios. It combines diverse marine ecosystem models from both the global and regional scale through a standardized protocol for ensemble modelling in an attempt to correct for any bias in the individual models that make up the ensemble. [3] Fish-MIP's goal is to use this ensemble modelling to project a more robust picture of the future state of fisheries and marine ecosystems under the impacts of climate change, [4] and ultimately to help inform fishing policy.

Contents

Background

Ensemble modelling

Ensemble modelling is combining the outputs of multiple models that are all working on the same question. [5] This allows researchers to analyze the different vulnerabilities of each individual model, and weigh the impact of particular inputs. [1] Aggregating all the outputs and then using the outputs with the highest frequency across the models minimizes the error in the projection. [6]

Fish-MIP

Ensemble modelling is generally difficult because of the variety of possible inputs and outputs, which makes it challenging to run different models on the same data and compare results. The Fish-MIP protocols standardize input variables, as well as the names of files and data stores. The inputs are collected from simplified fishing scenarios, models of the climate and how much greenhouse gas will be in the atmosphere. These standardized inputs and scenarios can then be used to drive multiple ecosystem models, and the outputs are then combined through an ensemble modelling approach. The Fish-MIP standardizing protocol allow for these diverse inputs to be collated, thus minimizing projection error. [7] [8] [9] [10]

Some of the models used:

Global

Regional

Use in studies

Although at an earlier stage than the Coupled Model Intercomparison Project, as of 2021 studies suggest that larger fish species and the tropics are most affected by climate change. [15]

Related Research Articles

<span class="mw-page-title-main">Overfishing</span> Removal of a species of fish from water at a rate that the species cannot replenish

Overfishing is the removal of a species of fish from a body of water at a rate greater than that the species can replenish its population naturally, resulting in the species becoming increasingly underpopulated in that area. Overfishing can occur in water bodies of any sizes, such as ponds, wetlands, rivers, lakes or oceans, and can result in resource depletion, reduced biological growth rates and low biomass levels. Sustained overfishing can lead to critical depensation, where the fish population is no longer able to sustain itself. Some forms of overfishing, such as the overfishing of sharks, has led to the upset of entire marine ecosystems. Types of overfishing include: growth overfishing, recruitment overfishing, ecosystem overfishing.

<span class="mw-page-title-main">Fisheries management</span> Regulation of fishing

The goal of fisheries management is to produce sustainable biological, environmental and socioeconomic benefits from renewable aquatic resources. Wild fisheries are classified as renewable when the organisms of interest produce an annual biological surplus that with judicious management can be harvested without reducing future productivity. Fishery management employs activities that protect fishery resources so sustainable exploitation is possible, drawing on fisheries science and possibly including the precautionary principle.

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

<span class="mw-page-title-main">Kuroshio Current</span> North flowing ocean current on the west side of the North Pacific Ocean

The Kuroshio Current, also known as the Black or Japan Current or the Black Stream, is a north-flowing, warm ocean current on the west side of the North Pacific Ocean basin. It was named for the deep blue appearance of its waters. Similar to the Gulf Stream in the North Atlantic, the Kuroshio is a powerful western boundary current that transports warm equatorial water poleward and forms the western limb of the North Pacific Subtropical Gyre. Off the East Coast of Japan, it merges with the Oyashio Current to form the North Pacific Current.

In climatology, the Coupled Model Intercomparison Project (CMIP) is a collaborative framework designed to improve knowledge of climate change. It was organized in 1995 by the Working Group on Coupled Modelling (WGCM) of the World Climate Research Programme (WCRP). It is developed in phases to foster the climate model improvements but also to support national and international assessments of climate change. A related project is the Atmospheric Model Intercomparison Project (AMIP) for global coupled ocean-atmosphere general circulation models (GCMs).

<span class="mw-page-title-main">Scophthalmidae</span> Family of fishes

The Scophthalmidae are a family of flatfish found in the North Atlantic Ocean, Baltic Sea, Mediterranean Sea, and Black Sea. Fish of this family are known commonly as turbots, though this name can refer specifically to Scophthalmus maximus, as well. Some common names found in species of this family are turbots, windowpanes, and brills.

The Sea Around Us is an international research initiative and a member of the Global Fisheries Cluster at the University of British Columbia. The Sea Around Us assesses the impact of fisheries on the marine ecosystems of the world and offers mitigating solutions to a range of stakeholders. To achieve this, the Sea Around Us presents fisheries and fisheries-related data at spatial scales that have ecological and policy relevance, such as by Exclusive Economic Zones, High Seas areas, Large Marine Ecosystems and Ecosystems.

<span class="mw-page-title-main">Marine ecosystem</span> Ecosystem in saltwater environment

Marine ecosystems are the largest of Earth's aquatic ecosystems and exist in waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Seawater has an average salinity of 35 parts per thousand of water. Actual salinity varies among different marine ecosystems. Marine ecosystems can be divided into many zones depending upon water depth and shoreline features. The oceanic zone is the vast open part of the ocean where animals such as whales, sharks, and tuna live. The benthic zone consists of substrates below water where many invertebrates live. The intertidal zone is the area between high and low tides. Other near-shore (neritic) zones can include mudflats, seagrass meadows, mangroves, rocky intertidal systems, salt marshes, coral reefs, lagoons. In the deep water, hydrothermal vents may occur where chemosynthetic sulfur bacteria form the base of the food web.

<span class="mw-page-title-main">Environmental impact of fishing</span>

The environmental impact of fishing includes issues such as the availability of fish, overfishing, fisheries, and fisheries management; as well as the impact of industrial fishing on other elements of the environment, such as bycatch. These issues are part of marine conservation, and are addressed in fisheries science programs. According to a 2019 FAO report, global production of fish, crustaceans, molluscs and other aquatic animals has continued to grow and reached 172.6 million tonnes in 2017, with an increase of 4.1 percent compared with 2016. There is a growing gap between the supply of fish and demand, due in part to world population growth.

The Future of Marine Animal Populations (FMAP) project was one of the core projects of the international Census of Marine Life (2000–2010). FMAP's mission was to describe and synthesize globally changing patterns of species abundance, distribution, and diversity, and to model the effects of fishing, climate change and other key variables on those patterns. This work was done across ocean realms and with an emphasis on understanding past changes and predicting future scenarios.

<span class="mw-page-title-main">Boris Worm</span>

Boris Worm is a marine ecologist, and the Killam Research Professor at Dalhousie University in Halifax, Nova Scotia, Canada.

<span class="mw-page-title-main">Climate change and fisheries</span>

Fisheries are affected by climate change in many ways: marine aquatic ecosystems are being affected by rising ocean temperatures, ocean acidification and ocean deoxygenation, while freshwater ecosystems are being impacted by changes in water temperature, water flow, and fish habitat loss. These effects vary in the context of each fishery. Climate change is modifying fish distributions and the productivity of marine and freshwater species. Climate change is expected to lead to significant changes in the availability and trade of fish products. The geopolitical and economic consequences will be significant, especially for the countries most dependent on the sector. The biggest decreases in maximum catch potential can be expected in the tropics, mostly in the South Pacific regions.

<span class="mw-page-title-main">Fishing down the food web</span>

Fishing down the food web is the process whereby fisheries in a given ecosystem, "having depleted the large predatory fish on top of the food web, turn to increasingly smaller species, finally ending up with previously spurned small fish and invertebrates".

<span class="mw-page-title-main">Planktivore</span> Aquatic organism that feeds on planktonic food

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton. Planktivorous organisms encompass a range of some of the planet's smallest to largest multicellular animals in both the present day and in the past billion years; basking sharks and copepods are just two examples of giant and microscopic organisms that feed upon plankton. Planktivory can be an important mechanism of top-down control that contributes to trophic cascades in aquatic and marine systems. There is a tremendous diversity of feeding strategies and behaviors that planktivores utilize to capture prey. Some planktivores utilize tides and currents to migrate between estuaries and coastal waters; other aquatic planktivores reside in lakes or reservoirs where diverse assemblages of plankton are present, or migrate vertically in the water column searching for prey. Planktivore populations can impact the abundance and community composition of planktonic species through their predation pressure, and planktivore migrations facilitate nutrient transport between benthic and pelagic habitats.

<span class="mw-page-title-main">Nereus Program</span>

The Nereus Program is a global interdisciplinary initiative between the Nippon Foundation and the University of British Columbia that was created to further our knowledge of how best to attain sustainability for our world’s oceans. In addition to the Nippon Foundation and UBC, the program partners with University of Cambridge, Duke University, Princeton University, Stockholm University, United Nations Environment Program-World Conservation Monitoring Centre and Utrecht University. The program is built around three core objectives: to conduct collaborative ocean research across the natural and social sciences, to develop an interdisciplinary network of experts that can engage in discussion of complex and multifaceted questions of ocean sustainability, and to transfer these ideas to practical solutions in global policy forums.

<span class="mw-page-title-main">William Cheung (scientist)</span> Marine biologist

William Cheung is a marine biologist, well known for his research on the impacts of climate change on marine ecosystems and fisheries. He currently works as director of science of the Nereus Program and is also an associate professor at the University of British Columbia, as well as Leader at the UBC Changing Ocean Research Unit.

<span class="mw-page-title-main">Marine food web</span> Marine consumer-resource system

Compared to terrestrial environments, marine environments have biomass pyramids which are inverted at the base. In particular, the biomass of consumers is larger than the biomass of primary producers. This happens because the ocean's primary producers are tiny phytoplankton which grow and reproduce rapidly, so a small mass can have a fast rate of primary production. In contrast, many significant terrestrial primary producers, such as mature forests, grow and reproduce slowly, so a much larger mass is needed to achieve the same rate of primary production.

<span class="mw-page-title-main">Human impact on marine life</span>

Human activities affect marine life and marine habitats through overfishing, habitat loss, the introduction of invasive species, ocean pollution, ocean acidification and ocean warming. These impact marine ecosystems and food webs and may result in consequences as yet unrecognised for the biodiversity and continuation of marine life forms.

<span class="mw-page-title-main">Marine coastal ecosystem</span> Wildland-ocean interface

A marine coastal ecosystem is a marine ecosystem which occurs where the land meets the ocean. Marine coastal ecosystems include many very different types of marine habitats, each with their own characteristics and species composition. They are characterized by high levels of biodiversity and productivity.

Elizabeth A. Fulton, also known as Beth Fulton, is an Australian ecosystem modeller, who was elected a Fellow of the Australian Academy of Science in 2022. She is a Research Group Leader at CSIRO Oceans & Atmosphere in Hobart, Tasmania.

References

  1. 1 2 Cheung, William W. L. (2019). Predicting Future Oceans : Sustainability of Ocean and Human Systems Amidst Global Environmental Change. Yoshitaka Ota, Andrés. Cisneros-Montemayor. San Diego: Elsevier. ISBN   978-0-12-817946-8. OCLC   1114972202.
  2. Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. (2013-07-31). "A trend-preserving bias correction the ISI-MIP approach". Earth System Dynamics. 4 (2): 219–236. Bibcode:2013ESD.....4..219H. doi: 10.5194/esd-4-219-2013 . ISSN   2190-4979.
  3. Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine (2018-04-13). "A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0". Geoscientific Model Development. 11 (4): 1421–1442. Bibcode:2018GMD....11.1421T. doi: 10.5194/gmd-11-1421-2018 . hdl: 10261/165167 . ISSN   1991-959X.
  4. Bryndum-Buchholz, Andrea; Prentice, Faelan; Tittensor, Derek P.; Blanchard, Julia L.; Cheung, William W.L.; Christensen, Villy; Galbraith, Eric D.; Maury, Olivier; Lotze, Heike K. (2020-01-01). Favaro, Brett (ed.). "Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans". FACETS. 5 (1): 105–122. doi: 10.1139/facets-2019-0035 . ISSN   2371-1671. S2CID   216303864.
  5. Kotu, Vijay; Deshpande, Bala (2019), "Data Science Process", Data Science, Elsevier, pp. 19–37, doi: 10.1016/b978-0-12-814761-0.00002-2 , ISBN   978-0-12-814761-0, S2CID   117469594
  6. Predictive Analytics and Data Mining. Elsevier. 2015. doi:10.1016/c2014-0-00329-2. ISBN   978-0-12-801460-8.
  7. "Fisheries and Marine Ecosystem Model Intercomparison (Fish-MIP) Postdoctoral Scientist | Euromarine Network". www.euromarinenetwork.eu. Retrieved 2021-11-19.
  8. Tittensor, Derek P.; Novaglio, Camilla; Harrison, Cheryl S.; Heneghan, Ryan F.; Barrier, Nicolas; Bianchi, Daniele; Bopp, Laurent; Bryndum-Buchholz, Andrea; Britten, Gregory L.; Büchner, Matthias; Cheung, William W. L. (November 2021). "Next-generation ensemble projections reveal higher climate risks for marine ecosystems". Nature Climate Change. 11 (11): 973–981. Bibcode:2021NatCC..11..973T. doi:10.1038/s41558-021-01173-9. ISSN   1758-6798. PMC   8556156 . PMID   34745348.
  9. "ISIMIP3b simulation round – Fisheries and Marine Ecosystems (global)". protocol.isimip.org. Retrieved 2021-11-19.
  10. "ISIMIP3b simulation round – Fisheries and Marine Ecosystems (regional)". protocol.isimip.org. Retrieved 2021-11-19.
  11. "Apecosm – Modelling open ocean pelagic ecosystems in the global ocean" . Retrieved 2021-11-19.
  12. "BOATS – Integrated Earth System Dynamics" . Retrieved 2021-11-19.
  13. Audzijonyte, Asta; Pethybridge, Heidi; Porobic, Javier; Gorton, Rebecca; Kaplan, Isaac; Fulton, Elizabeth A. (October 2019). Poisot, Timothée (ed.). "Atlantis : A spatially explicit end‐to‐end marine ecosystem model with dynamically integrated physics, ecology and socio‐economic modules". Methods in Ecology and Evolution. 10 (10): 1814–1819. doi: 10.1111/2041-210X.13272 . ISSN   2041-210X. S2CID   199632117.
  14. "Osmose – Object-oriented Simulator of Marine Ecosystems" . Retrieved 2021-11-19.
  15. "Compared with climate, modelling of ecosystems is at an early stage". The Economist. 2021-06-15. ISSN   0013-0613 . Retrieved 2021-10-27.
  16. Gómara, Iñigo; Rodríguez-Fonseca, Belén; Mohino, Elsa; Losada, Teresa; Polo, Irene; Coll, Marta (2021-02-18). "Skillful prediction of tropical Pacific fisheries provided by Atlantic Niños". bioRxiv: 2021.02.17.431587. doi:10.1101/2021.02.17.431587. hdl: 10261/230501 . S2CID   231981566.
  17. Pontavice, Hubert du; Gascuel, Didier; Reygondeau, Gabriel; Stock, Charles; Cheung, William W. L. (2021). "Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production". Global Change Biology. 27 (11): 2608–2622. Bibcode:2021GCBio..27.2608P. doi:10.1111/gcb.15576. ISSN   1365-2486. PMID   33660891. S2CID   232113515.
  18. Bryndum‐Buchholz, Andrea; Tittensor, Derek P.; Blanchard, Julia L.; Cheung, William W. L.; Coll, Marta; Galbraith, Eric D.; Jennings, Simon; Maury, Olivier; Lotze, Heike K. (2019). "Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins". Global Change Biology. 25 (2): 459–472. Bibcode:2019GCBio..25..459B. doi:10.1111/gcb.14512. hdl: 10261/175086 . ISSN   1365-2486. PMID   30408274. S2CID   53244170.
  19. Bryndum-Buchholz, A; Boyce, DG; Tittensor, DP; Christensen, V; Bianchi, D; Lotze, HK (2020-08-27). "Climate-change impacts and fisheries management challenges in the North Atlantic Ocean". Marine Ecology Progress Series. 648: 1–17. Bibcode:2020MEPS..648....1B. doi: 10.3354/meps13438 . ISSN   0171-8630. S2CID   225267165.
  20. Boyce, Daniel G.; Lotze, Heike K.; Tittensor, Derek P.; Carozza, David A.; Worm, Boris (2020-05-06). "Future ocean biomass losses may widen socioeconomic equity gaps". Nature Communications. 11 (1): 2235. Bibcode:2020NatCo..11.2235B. doi:10.1038/s41467-020-15708-9. ISSN   2041-1723. PMC   7203146 . PMID   32376884.
  21. Lotze, Heike K.; Tittensor, Derek P.; Bryndum-Buchholz, Andrea; Eddy, Tyler D.; Cheung, William W. L.; Galbraith, Eric D.; Barange, Manuel; Barrier, Nicolas; Bianchi, Daniele; Blanchard, Julia L.; Bopp, Laurent (2019-06-25). "Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change". Proceedings of the National Academy of Sciences. 116 (26): 12907–12912. Bibcode:2019PNAS..11612907L. doi: 10.1073/pnas.1900194116 . ISSN   0027-8424. PMC   6600926 . PMID   31186360.