Fission Product Pilot Plant

Last updated

The Fission Product Pilot Plant, building 3515 at Oak Ridge National Laboratory (ORNL), was built in 1948 to extract radioactive isotopes from liquid radioactive waste. It was formerly known as the 'ruthenium-106 tank arrangement'. It is a relatively small facility; the task of extracting radioactive isotopes later took place at a number of specialised buildings nearby.

Contents

References differ as to when the plant was built; 'radioactive waste management at ORNL' says that it was completed in 1957, the 1955 Annual Report has engineering drawings indicating that the building was fully designed in 1955, but other references suggest that there was a building on the site in 1948.

Contamination issues

The plant was extensively contaminated during operation, particularly by waste produced while flushing out the tanks inside for maintenance. Traces of human feces were found in the tanks.

End of life

Operations at FPPP ended in the early 1960s, and the plant was entombed in concrete up to 1.5 metres (5') thick; there was a proposal made in 1993 for dismantling the plant by robot from the inside, but it's not clear whether this was carried out.

Related Research Articles

<span class="mw-page-title-main">Radioactive waste</span> Unwanted or unusable radioactive materials

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

<span class="mw-page-title-main">Oak Ridge National Laboratory</span> United States DOE national laboratory in Oak Ridge, Tennessee, United States

Oak Ridge National Laboratory (ORNL) is a U.S. multiprogram science and technology national laboratory sponsored by the U.S. Department of Energy (DOE) and administered, managed, and operated by UT–Battelle as a federally funded research and development center (FFRDC) under a contract with the DOE, located in Oak Ridge, Tennessee.

<span class="mw-page-title-main">Hanford Site</span> Decommissioned nuclear production complex in Washington, United States

The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. The site has been known by many names, including Hanford Project, Hanford Works, Hanford Engineer Works and Hanford Nuclear Reservation. Established in 1943 as part of the Manhattan Project, the site was home to the B Reactor, the first full-scale plutonium production reactor in the world. Plutonium manufactured at the site was used in the first atomic bomb, which was tested at the Trinity site, and in the Fat Man bomb that was detonated over Nagasaki, Japan.

<span class="mw-page-title-main">Nuclear reprocessing</span> Chemical operations that separate fissile material from spent fuel to be recycled as new fuel

Nuclear reprocessing is the chemical separation of fission products and unused uranium from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the reprocessed plutonium was recycled back into MOX nuclear fuel for thermal reactors. The reprocessed uranium, also known as the spent fuel material, can in principle also be re-used as fuel, but that is only economical when uranium supply is low and prices are high. A breeder reactor is not restricted to using recycled plutonium and uranium. It can employ all the actinides, closing the nuclear fuel cycle and potentially multiplying the energy extracted from natural uranium by about 60 times.

<span class="mw-page-title-main">Sellafield</span> Nuclear site in Cumbria, England

Sellafield is a large multi-function nuclear site close to Seascale on the coast of Cumbria, England. As of August 2022, primary activities are nuclear waste processing and storage and nuclear decommissioning. Former activities included nuclear power generation from 1956 to 2003, and nuclear fuel reprocessing from 1952 to 2022. Reprocessing ceased on 17 July 2022, when the Magnox Reprocessing Plant completed its last batch of fuel after 58 years of operation.

<span class="mw-page-title-main">Nuclear chemistry</span> Branch of chemistry concerned with radioactivity, transmutation and other nuclear processes

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

<span class="mw-page-title-main">Savannah River Site</span> Nuclear reservation in the US

The Savannah River Site (SRS) is a U.S. Department of Energy (DOE) reservation in the United States in the state of South Carolina, located on land in Aiken, Allendale, and Barnwell counties adjacent to the Savannah River, 25 miles (40 km) southeast of Augusta, Georgia. The site was built during the 1950s to refine nuclear materials for deployment in nuclear weapons. It covers 310 square miles (800 km2) and employs more than 10,000 people.

The Mayak Production Association is one of the biggest nuclear facilities in the Russian Federation, housing a reprocessing plant. The closest settlements are Ozyorsk to the northwest and Novogornyi to the south.

<span class="mw-page-title-main">Calutron</span> Mass spectrometer

A calutron is a mass spectrometer originally designed and used for separating the isotopes of uranium. It was developed by Ernest Lawrence during the Manhattan Project and was based on his earlier invention, the cyclotron. Its name was derived from California University Cyclotron, in tribute to Lawrence's institution, the University of California, where it was invented. Calutrons were used in the industrial-scale Y-12 uranium enrichment plant at the Clinton Engineer Works in Oak Ridge, Tennessee. The enriched uranium produced was used in the Little Boy atomic bomb that was detonated over Hiroshima on 6 August 1945.

<span class="mw-page-title-main">Integral fast reactor</span> Nuclear reactor design

The integral fast reactor is a design for a nuclear reactor using fast neutrons and no neutron moderator. IFR would breed more fuel and is distinguished by a nuclear fuel cycle that uses reprocessing via electrorefining at the reactor site.

<span class="mw-page-title-main">Molten salt reactor</span> Type of nuclear reactor cooled by molten material

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Only two MSRs have ever operated, both research reactors in the United States. The 1950's Aircraft Reactor Experiment was primarily motivated by the compact size that the technique offers, while the 1960's Molten-Salt Reactor Experiment aimed to prove the concept of a nuclear power plant which implements a thorium fuel cycle in a breeder reactor. Increased research into Generation IV reactor designs began to renew interest in the technology, with multiple nations having projects, and as of September 2021, China is on the verge of starting its TMSR-LF1 thorium MSR.

<span class="mw-page-title-main">La Hague site</span> Nuclear fuel reprocessing plant at La Hague, France

The La Hague site is a nuclear fuel reprocessing plant at La Hague on the Cotentin Peninsula in northern France, with the Manche storage centre bordering on it. Operated by Orano, formerly AREVA, and prior to that COGEMA, La Hague has nearly half of the world's light water reactor spent nuclear fuel reprocessing capacity. It has been in operation since 1976, and has a capacity of about 1,700 tonnes per year. It extracts plutonium which is then recycled into MOX fuel at the Marcoule site.

<span class="mw-page-title-main">Aqueous homogeneous reactor</span>

Aqueous homogeneous reactors (AHR) are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with the coolant and the moderator, thus the name "homogeneous". The water can be either heavy water or ordinary (light) water, both of which need to be very pure.

<span class="mw-page-title-main">Molten-Salt Reactor Experiment</span> Nuclear reactor, Oak Ridge 1965–1969

The Molten-Salt Reactor Experiment (MSRE) was an experimental molten salt reactor at the Oak Ridge National Laboratory (ORNL) researching this technology through the 1960s; constructed by 1964, it went critical in 1965 and was operated until 1969. The costs of a cleanup project were estimated at about $130 million.

<span class="mw-page-title-main">Lake Ontario Ordnance Works</span> Military installation in Niagara County, New York

The former Lake Ontario Ordnance Works (LOOW) was a 7,500-acre (3,000 ha) military installation located in Niagara County, New York, United States, approximately 9.6 mi (15.4 km) north of Niagara Falls.

<span class="mw-page-title-main">Fernald Feed Materials Production Center</span> Uranium fuel factory

The Fernald Feed Materials Production Center is a Superfund site located within Crosby Township in Hamilton County, Ohio, as well as Ross Township in Butler County, Ohio. It was a uranium processing facility located near the rural town of New Baltimore, about 20 miles (32 km) northwest of Cincinnati, which fabricated uranium fuel cores for the U.S. nuclear weapons production complex from 1951 to 1989. During that time, the plant produced 170,000 metric tons uranium (MTU) of metal products and 35,000 MTU of intermediate compounds, such as uranium trioxide and uranium tetrafluoride.

<span class="mw-page-title-main">Liquid fluoride thorium reactor</span> Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based, molten, liquid salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

<span class="mw-page-title-main">Kyshtym disaster</span> 1957 radiological contamination disaster in the Soviet Union

The Kyshtym disaster, sometimes referred to as the Mayak disaster or Ozyorsk disaster in newer sources, was a radioactive contamination accident that occurred on 29 September 1957 at Mayak, a plutonium production site for nuclear weapons and nuclear fuel reprocessing plant located in the closed city of Chelyabinsk-40 in Chelyabinsk Oblast, Russian SFSR, Soviet Union.

The Fukushima disaster cleanup is an ongoing attempt to limit radioactive contamination from the three nuclear reactors involved in the Fukushima Daiichi nuclear disaster that followed the earthquake and tsunami on 11 March 2011. The affected reactors were adjacent to one another and accident management was made much more difficult because of the number of simultaneous hazards concentrated in a small area. Failure of emergency power following the tsunami resulted in loss of coolant from each reactor, hydrogen explosions damaging the reactor buildings, and water draining from open-air spent fuel pools. Plant workers were put in the position of trying to cope simultaneously with core meltdowns at three reactors and exposed fuel pools at three units.

<span class="mw-page-title-main">Hanford Tank Waste Treatment and Immobilization Plant</span>

The Hanford Tank Waste Treatment and Immobilization Plant, known as the Vit Plant, will process the nuclear waste at the Hanford Site in Washington into a solid glass form using vitrification. A proven technology that has been used at the Savannah River Site and West Valley Demonstration Project, vitrification involves mixing the waste with glass-forming chemicals, heating it to 2,100 degrees Fahrenheit, and pouring it into stainless steel containers to solidify.

References

Coordinates: 35°55′35″N84°19′01″W / 35.92646292°N 84.31681642°W / 35.92646292; -84.31681642