Flapping counter-torque

Last updated
Ornithopter in flight. Skybird.gif
Ornithopter in flight.
Basic motion of the insect wing in insect with an indirect flight mechanism. Scheme of dorsoventral cut through a thorax segment with wings.
a. wings
b. joints
c. dorsoventral muscles
d. longitudinal muscle Motion of Insectwing.gif
Basic motion of the insect wing in insect with an indirect flight mechanism. Scheme of dorsoventral cut through a thorax segment with wings.
a. wings
b. joints
c. dorsoventral muscles
d. longitudinal muscle

Flapping counter-torque is a ubiquitous passive rotational damping effect in flapping flight that arises from world frame differences in the speed of flapping wings during turns. During a turns, flapping that is symmetrical (in velocity and speed) in the body frame of the animal is not symmetrical (in velocity or speed) in the lab frame.

During such turns, the wings travel at different speeds (despite no change to local velocity from the perspective of the flapping animal or machine). Thus, they create different amounts of lift and drag. At the speed and size of flapping animals, forces created by flapping are essentially proportional to the square of velocity relative to the fluid. Thus, even small asymmetries in (lab frame) velocity can create large asymmetries in forces or torques. In the case of flying animals, these torques counters the turn (and is thus known as "countertorque"). Flapping countertorque specifically describes this type of damping in flapping flight, though other passive damping (rotational coutertorque) effects which arise from flapping are in the process of being described in the scientific field of animal flight biomechanics.

The first paper to show this affect did so exclusively for yaw turns (rotations about the vertical axis). Tyson L. Hedrick, Bo Cheng, and Xinyan Deng released their research findings on the dynamics of turning and maneuverability during flight pertaining to flying animals in the report, Wingbeat Time and the Scaling of Passive Rotational Damping in Flapping Flight. [1] Importantly, the damping was shown to be relevant to the flapping dynamics of animals, and on a time scale close to the period of wingbeats.

The researchers recorded the flight of hummingbirds and hawkmoths using 1,000 frame-per-second video cameras. The research expanded to four other kinds of flying insects, two species of birds and a bat which all use about the same number of wing beats to complete a turn in mid-flight. [2] The flying animals returned to regular flapping to resume a straight course of flight.

This suggests higher wingbeat frequencies might allow both increased ability to maneuver and stabilize in flight. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Coriolis force</span> Force on objects moving within a reference frame that rotates with respect to an inertial frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Nutation</span> Wobble of the axis of rotation

Nutation is a rocking, swaying, or nodding motion in the axis of rotation of a largely axially symmetric object, such as a gyroscope, planet, or bullet in flight, or as an intended behaviour of a mechanism. In an appropriate reference frame it can be defined as a change in the second Euler angle. If it is not caused by forces external to the body, it is called free nutation or Euler nutation. A pure nutation is a movement of a rotational axis such that the first Euler angle is constant. Therefore it can be seen that the circular red arrow in the diagram indicates the combined effects of precession and nutation, while nutation in the absence of precession would only change the tilt from vertical. However, in spacecraft dynamics, precession is sometimes referred to as nutation.

<span class="mw-page-title-main">Wing</span> Appendage used for flight

A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

<span class="mw-page-title-main">Halteres</span> Pair of small club-shaped insect organs

Halteres are a pair of small club-shaped organs on the body of two orders of flying insects that provide information about body rotations during flight. Insects of the large order Diptera (flies) have halteres which evolved from a pair of ancestral hindwings, while males of the much smaller order Strepsiptera (stylops) have halteres which evolved from a pair of ancestral forewings.

<span class="mw-page-title-main">Tailplane</span> Small lifting surface of a fixed-wing aircraft

A tailplane, also known as a horizontal stabiliser, is a small lifting surface located on the tail (empennage) behind the main lifting surfaces of a fixed-wing aircraft as well as other non-fixed-wing aircraft such as helicopters and gyroplanes. Not all fixed-wing aircraft have tailplanes. Canards, tailless and flying wing aircraft have no separate tailplane, while in V-tail aircraft the vertical stabiliser, rudder, and the tail-plane and elevator are combined to form two diagonal surfaces in a V layout.

<span class="mw-page-title-main">Aircraft flight dynamics</span> Science of air vehicle orientation and control in three dimensions

Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.

<span class="mw-page-title-main">Ornithopter</span> Aircraft which use flapping movement of the wings to generate lift

An ornithopter is an aircraft that flies by flapping its wings. Designers sought to imitate the flapping-wing flight of birds, bats, and insects. Though machines may differ in form, they are usually built on the same scale as flying animals. Larger, crewed ornithopters have also been built and some have been successful. Crewed ornithopters are generally either powered by engines or by the pilot.

<span class="mw-page-title-main">Wing loading</span> Total mass divided by area of wing

In aerodynamics, wing loading is the total mass of an aircraft or flying animal divided by the area of its wing. The stalling speed of an aircraft is partly determined by its wing loading.

<span class="mw-page-title-main">Flight control surfaces</span> Surface that allows a pilot to adjust and control an aircrafts flight attitude

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude.

<span class="mw-page-title-main">Bird flight</span> Aerial locomotion in avian dinosaurs

Bird flight is the primary mode of locomotion used by most bird species in which birds take off and fly. Flight assists birds with feeding, breeding, avoiding predators, and migrating.

<span class="mw-page-title-main">Insect flight</span> Mechanisms and evolution of insect flight

Insects are the only group of invertebrates that have evolved wings and flight. Insects first flew in the Carboniferous, some 300 to 350 million years ago, making them the first animals to evolve flight. Wings may have evolved from appendages on the sides of existing limbs, which already had nerves, joints, and muscles used for other purposes. These may initially have been used for sailing on water, or to slow the rate of descent when gliding.

<span class="mw-page-title-main">Helicopter rotor</span> Aircraft component

On a helicopter, the main rotor or rotor system is the combination of several rotary wings with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.

<span class="mw-page-title-main">Flying and gliding animals</span> Animals that have evolved aerial locomotion

A number of animals are capable of aerial locomotion, either by powered flight or by gliding. This trait has appeared by evolution many times, without any single common ancestor. Flight has evolved at least four times in separate animals: insects, pterosaurs, birds, and bats. Gliding has evolved on many more occasions. Usually the development is to aid canopy animals in getting from tree to tree, although there are other possibilities. Gliding, in particular, has evolved among rainforest animals, especially in the rainforests in Asia where the trees are tall and widely spaced. Several species of aquatic animals, and a few amphibians and reptiles have also evolved this gliding flight ability, typically as a means of evading predators.

<span class="mw-page-title-main">Bicycle and motorcycle dynamics</span> Science behind the motion of bicycles and motorcycles

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

<span class="mw-page-title-main">Origin of avian flight</span> Evolution of birds from non-flying ancestors

Around 350 BCE, Aristotle and other philosophers of the time attempted to explain the aerodynamics of avian flight. Even after the discovery of the ancestral bird Archaeopteryx which lived over 150 million years ago, debates still persist regarding the evolution of flight. There are three leading hypotheses pertaining to avian flight: Pouncing Proavis model, Cursorial model, and Arboreal model.

<span class="mw-page-title-main">Yaw (rotation)</span> Rotation of a vehicle about its vertical axis

A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal. It is commonly measured in degrees per second or radians per second.

<span class="mw-page-title-main">Tradeoffs for locomotion in air and water</span> Comparison of swimming and flying, evolution and biophysics

Certain species of fish and birds are able to locomote in both air and water, two fluid media with very different properties. A fluid is a particular phase of matter that deforms under shear stresses and includes any type of liquid or gas. Because fluids are easily deformable and move in response to applied forces, efficiently locomoting in a fluid medium presents unique challenges. Specific morphological characteristics are therefore required in animal species that primarily depend on fluidic locomotion. Because the properties of air and water are so different, swimming and flying have very disparate morphological requirements. As a result, despite the large diversity of animals that are capable of flight or swimming, only a limited number of these species have mastered the ability to both fly and swim. These species demonstrate distinct morphological and behavioral tradeoffs associated with transitioning from air to water and water to air.

<span class="mw-page-title-main">DelFly</span>

The DelFly is a fully controllable camera-equipped flapping wing Micro Air Vehicle or Ornithopter developed at the Micro Air Vehicle Lab of the Delft University of TechnologyArchived 2019-10-19 at the Wayback Machine in collaboration with Wageningen University.

Asynchronous muscles are muscles in which there is no one-to-one relationship between electrical stimulation and mechanical contraction. These muscles are found in 75% of flying insects and have convergently evolved 7-10 times. Unlike their synchronous counterparts that contract once per neural signal, mechanical oscillations trigger force production in asynchronous muscles. Typically, the rate of mechanical contraction is an order of magnitude greater than electrical signals. Although they achieve greater force output and higher efficiency at high frequencies, they have limited applications because of their dependence on mechanical stretch.

<span class="mw-page-title-main">Bird wing</span> Paired forelimb that allows birds to fly

Bird wings are a paired forelimb in birds. The wings give the birds the ability to fly, creating lift.

References

  1. "Birds do it, and now we know how". CBC News. April 10, 2009.
  2. Karen Hopkin (April 10, 2009). "Birds and Bugs Use Same Flight Manual". Scientific American Inc.
  3. Randolph E. Schmid (April 9, 2009). "Scientists start to unlock secrets of bird flight". The Associated Press. Archived from the original on April 11, 2009.{{cite web}}: CS1 maint: unfit URL (link)
  4. Brandon Bryn (April 9, 2009). "Science: Maneuverability and Stability Are Birds of a Feather". American Association for the Advancement of Science. Archived from the original on May 8, 2013. Retrieved April 14, 2009.