The flat pseudospectral method is part of the family of the Ross–Fahroo pseudospectral methods introduced by Ross and Fahroo. [1] [2] The method combines the concept of differential flatness with pseudospectral optimal control to generate outputs in the so-called flat space. [3] [4]
Because the differentiation matrix, , in a pseudospectral method is square, higher-order derivatives of any polynomial, , can be obtained by powers of ,
where is the pseudospectral variable and is a finite positive integer. By differential flatness, there exists functions and such that the state and control variables can be written as,
The combination of these concepts generates the flat pseudospectral method; that is, x and u are written as,
Thus, an optimal control problem can be quickly and easily transformed to a problem with just the Y pseudospectral variable. [1]
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. It allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.
In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In transcendental number theory, the Lindemann–Weierstrass theorem is a result that is very useful in establishing the transcendence of numbers. It states the following.
Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to rocket thrusters, and the objective might be to reach the moon with minimum fuel expenditure. Or the dynamical system could be a nation's economy, with the objective to minimize unemployment; the controls in this case could be fiscal and monetary policy. A dynamical system may also be introduced to embed operations research problems within the framework of optimal control theory.
A roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Rounding errors are due to inexactness in the representation of real numbers and the arithmetic operations done with them. This is a form of quantization error. When using approximation equations or algorithms, especially when using finitely many digits to represent real numbers, one of the goals of numerical analysis is to estimate computation errors. Computation errors, also called numerical errors, include both truncation errors and roundoff errors.
In classical mechanics, holonomic constraints are relations between the position variables that can be expressed in the following form:
Pseudospectral optimal control is a joint theoretical-computational method for solving optimal control problems. It combines pseudospectral (PS) theory with optimal control theory to produce PS optimal control theory. PS optimal control theory has been used in ground and flight systems in military and industrial applications. The techniques have been extensively used to solve a wide range of problems such as those arising in UAV trajectory generation, missile guidance, control of robotic arms, vibration damping, lunar guidance, magnetic control, swing-up and stabilization of an inverted pendulum, orbit transfers, tether libration control, ascent guidance and quantum control.
DIDO is a MATLAB optimal control toolbox for solving general-purpose optimal control problems. It is widely used in academia, industry, and NASA. Hailed as a breakthrough software, DIDO is based on the pseudospectral optimal control theory of Ross and Fahroo. The latest enhancements to DIDO are described in Ross.
In applied mathematics, the pseudospectral knotting method is a generalization and enhancement of a standard pseudospectral method for optimal control. The concept was introduced by I. Michael Ross and F. Fahroo in 2004, and forms part of the collection of the Ross–Fahroo pseudospectral methods.
The Legendre pseudospectral method for optimal control problems is based on Legendre polynomials. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. A basic version of the Legendre pseudospectral was originally proposed by Elnagar and his coworkers in 1995. Since then, Ross, Fahroo and their coworkers have extended, generalized and applied the method for a large range of problems. An application that has received wide publicity is the use of their method for generating real time trajectories for the International Space Station.
The Chebyshev pseudospectral method for optimal control problems is based on Chebyshev polynomials of the first kind. It is part of the larger theory of pseudospectral optimal control, a term coined by Ross. Unlike the Legendre pseudospectral method, the Chebyshev pseudospectral (PS) method does not immediately offer high-accuracy quadrature solutions. Consequently, two different versions of the method have been proposed: one by Elnagar et al., and another by Fahroo and Ross. The two versions differ in their quadrature techniques. The Fahroo–Ross method is more commonly used today due to the ease in implementation of the Clenshaw–Curtis quadrature technique. In 2008, Trefethen showed that the Clenshaw–Curtis method was nearly as accurate as Gauss quadrature. This breakthrough result opened the door for a covector mapping theorem for Chebyshev PS methods. A complete mathematical theory for Chebyshev PS methods was finally developed in 2009 by Gong, Ross and Fahroo.
Introduced by I. Michael Ross and F. Fahroo, the Ross–Fahroo pseudospectral methods are a broad collection of pseudospectral methods for optimal control. Examples of the Ross–Fahroo pseudospectral methods are the pseudospectral knotting method, the flat pseudospectral method, the Legendre-Gauss-Radau pseudospectral method and pseudospectral methods for infinite-horizon optimal control.
Named after I. Michael Ross and F. Fahroo, the Ross–Fahroo lemma is a fundamental result in optimal control theory.
Isaac Michael Ross is a Distinguished Professor and Program Director of Control and Optimization at the Naval Postgraduate School in Monterey, CA. He has published a highly-regarded textbook on optimal control theory and seminal papers in pseudospectral optimal control theory, energy-sink theory, the optimization and deflection of near-Earth asteroids and comets, robotics, attitude dynamics and control, real-time optimal control and unscented optimal control. The Kang-Ross-Gong theorem, Ross' π lemma, Ross' time constant, the Ross–Fahroo lemma, and the Ross–Fahroo pseudospectral method are all named after him.
Fariba Fahroo is an American Persian mathematician, a program manager at the Air Force Office of Scientific Research, and a former program manager at the Defense Sciences Office. Along with I. M. Ross, she has published papers in pseudospectral optimal control theory. The Ross–Fahroo lemma and the Ross–Fahroo pseudospectral method are named after her. In 2010, she received, the AIAA Mechanics and Control of Flight Award for fundamental contributions to flight mechanics.
In the fields of dynamical systems and control theory, a fractional-order system is a dynamical system that can be modeled by a fractional differential equation containing derivatives of non-integer order. Such systems are said to have fractional dynamics. Derivatives and integrals of fractional orders are used to describe objects that can be characterized by power-law nonlocality, power-law long-range dependence or fractal properties. Fractional-order systems are useful in studying the anomalous behavior of dynamical systems in physics, electrochemistry, biology, viscoelasticity and chaotic systems.
A Carathéodory-π solution is a generalized solution to an ordinary differential equation. The concept is due to I. Michael Ross and named in honor of Constantin Carathéodory. Its practicality was demonstrated in 2008 by Ross et al. in a laboratory implementation of the concept. The concept is most useful for implementing feedback controls, particularly those generated by an application of Ross' pseudospectral optimal control theory.
GPOPS-II is a general-purpose MATLAB software for solving continuous optimal control problems using hp-adaptive Gaussian quadrature collocation and sparse nonlinear programming. The acronym GPOPS stands for "General Purpose OPtimal Control Software", and the Roman numeral "II" refers to the fact that GPOPS-II is the second software of its type.