Flattop (critical assembly)

Last updated
The flattop experiment, disassembled Flattop critical assembly.jpg
The flattop experiment, disassembled

Flattop is a benchmark critical assembly that is used to study the nuclear characteristics of uranium-233, uranium-235, and plutonium-239 in spherical geometries surrounded by a relatively thick natural uranium neutron reflector.

Contents

Flattop assemblies are used to measure neutron activation and reactivity coefficients. Since the neutron energies gradually decrease in the reflector, experiments may be run in various energy spectra based on the location in which they are placed. [1]

Specifications

Flattop is a natural-uranium-reflected, benchmarked, fixed-geometry critical assembly machine that can accommodate plutonium or uranium cores. The fast neutron spectrum is used to provide benchmarked neutronic measurements in spherical geometry with different fissile driver materials. Key missions for Flattop include fundamental reactor physics studies, sample irradiation for radiochemical research, actinide minimum critical mass studies, detector calibration, and training. The U-233 core is no longer usable because of its high gamma-ray activity. [1]

The experiment was originally located at the Los Alamos National Laboratory Critical Experiments Facility (LACEF) [2] located at the Los Alamos Pajarito Site, otherwise known as Technical Area 18. In 2005 the Pajarito Site started to shut down and nuclear material was moved to the National Criticality Experiments Research Center (NCERC) which is located at the Nevada National Security Site. However, NCERC continues to be operated by the Los Alamos National Laboratory. The core capabilities at NCERC include Flattop along with three other critical assemblies, Comet, Planet, and Godiva-IV and a significant inventory of nuclear material items available for experimental use. NCERC critical operations commenced in 2011 and continue to be operational today. [3]

Space power research

In 2012, Flattop was used for key demonstration of the use of nuclear power for space applications. The Demonstration Using Flattop Fission, or DUFF, [4] test was planned by Los Alamos National Laboratory to use Flattop as a nuclear heat source. A team from the NASA Glenn Research Center in partnership with the LANL reactor design team designed, built, and tested a heat pipe and power conversion system to couple to Flattop with the end goal of demonstrating electrical power production using technology applicable to space application. [4]

Controls

Flattop consists of a hemispherical fixed reflector and two movable quarter-spheres of reflector that can close down on the central core. One movable reflector is controlled by hydraulic pressure, while the other is actuated by a motor. [1]

Related Research Articles

<span class="mw-page-title-main">Nuclear chain reaction</span> When one nuclear reaction causes more

In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.

<span class="mw-page-title-main">Nuclear weapon design</span> Process by which nuclear WMDs are designed and produced

Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:

<span class="mw-page-title-main">Critical mass</span> Smallest amount of fissile material needed to sustain a nuclear reaction

In nuclear engineering, a critical mass is the smallest amount of fissile material needed for a sustained nuclear chain reaction. The critical mass of a fissionable material depends upon its nuclear properties, density, shape, enrichment, purity, temperature, and surroundings. The concept is important in nuclear weapon design.

<span class="mw-page-title-main">Breeder reactor</span> Nuclear reactor generating more fissile material than it consumes

A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be fueled with more-commonly available isotopes of uranium and thorium, such as uranium-238 and thorium-232, as opposed to the rare uranium-235 which is used in conventional reactors. These materials are called fertile materials since they can be bred into fuel by these breeder reactors.

<span class="mw-page-title-main">Operation Sandstone</span> Series of 1940s US nuclear tests

Operation Sandstone was a series of nuclear weapon tests in 1948. It was the third series of American tests, following Trinity in 1945 and Crossroads in 1946, and preceding Ranger. Like the Crossroads tests, the Sandstone tests were carried out at the Pacific Proving Grounds, although at Enewetak Atoll rather than Bikini Atoll. They differed from Crossroads in that they were conducted by the Atomic Energy Commission, with the armed forces having only a supporting role. The purpose of the Sandstone tests was also different: they were primarily tests of new bomb designs rather than of the effects of nuclear weapons. Three tests were carried out in April and May 1948 by Joint Task Force 7, with a work force of 10,366 personnel, of whom 9,890 were military.

<span class="mw-page-title-main">Fast-neutron reactor</span> Nuclear reactor where fast neutrons maintain a fission chain reaction

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest was the Superphénix sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been studied since the 1950s, as they provide certain advantages over the existing fleet of water-cooled and water-moderated reactors. These are:

A criticality accident is an accidental uncontrolled nuclear fission chain reaction. It is sometimes referred to as a critical excursion, critical power excursion, divergent chain reaction, or simply critical. Any such event involves the unintended accumulation or arrangement of a critical mass of fissile material, for example enriched uranium or plutonium. Criticality accidents can release potentially fatal radiation doses if they occur in an unprotected environment.

<span class="mw-page-title-main">Light-water reactor</span> Type of nuclear reactor that uses normal water

The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reactors are the most common type of nuclear reactor, and light-water reactors are the most common type of thermal-neutron reactor.

In nuclear engineering, prompt criticality describes a nuclear fission event in which criticality is achieved with prompt neutrons alone and does not rely on delayed neutrons. As a result, prompt supercriticality causes a much more rapid growth in the rate of energy release than other forms of criticality. Nuclear weapons are based on prompt criticality, while nuclear reactors rely on delayed neutrons or external neutrons to achieve criticality.

<span class="mw-page-title-main">Nuclear fuel</span> Material fuelling nuclear reactors

Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Nuclear fuel has the highest energy density of all practical fuel sources. The processes involved in mining, refining, purifying, using, and disposing of nuclear fuel are collectively known as the nuclear fuel cycle.

<span class="mw-page-title-main">Plutonium-239</span> Isotope of plutonium

Plutonium-239 is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.

<span class="mw-page-title-main">Aqueous homogeneous reactor</span> Type of nuclear reactor

Aqueous homogeneous reactors (AHR) is a two (2) chamber reactor consisting of an interior reactor chamber and an outside cooling and moderating jacket chamber. They are a type of nuclear reactor in which soluble nuclear salts are dissolved in water. The fuel is mixed with heavy or light water which partially moderates and cools the reactor. The outside layer of the reactor has more water which also partially cools and acts as a moderator. The water can be either heavy water or ordinary (light) water, which slows neutrons and helps facilitate a stable reaction, both of which need to be very pure.

<span class="mw-page-title-main">Plutonium</span> Chemical element with atomic number 94 (Pu)

Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous.

<span class="mw-page-title-main">Demon core</span> 1945–1946 sphere of plutonium

The demon core was a sphere of plutonium that was involved in two fatal radiation accidents when scientists tested it as a fissile core of an early atomic bomb. It was manufactured by the Manhattan Project, the U.S. nuclear weapon development effort during World War II. It was a subcritical mass that weighed 6.2 kilograms (14 lb) and was 8.9 centimeters (3.5 in) in diameter.

A modulated neutron initiator is a neutron source capable of producing a burst of neutrons on activation. It is a crucial part of some nuclear weapons, as its role is to "kick-start" the chain reaction at the optimal moment when the configuration is prompt critical. It is also known as an internal neutron initiator. The initiator is typically placed in the center of the plutonium pit, and is activated by impact of the converging shock wave.

<span class="mw-page-title-main">Clementine (nuclear reactor)</span>

Clementine was the code name for the world's first fast-neutron reactor, also known as the Los Alamos fast plutonium reactor. It was an experimental-scale reactor. The maximum output was 25 kW and was fueled by plutonium and cooled by liquid mercury. Clementine was located at Los Alamos National Laboratory in Los Alamos, New Mexico. Clementine was designed and built in 1945–1946 and first achieved criticality in 1946 and full power in March 1949. The reactor was named after the song "Oh My Darling, Clementine." The similarities to the song were that the reactor was located in a deep canyon and the reactor operators were 49'ers, as 49 was one of the code names for plutonium at the time.

<span class="mw-page-title-main">Raemer Schreiber</span> American nuclear physicist (1910–1998)

Raemer Edgar Schreiber was an American physicist from McMinnville, Oregon who served Los Alamos National Laboratory during World War II, participating in the development of the atomic bomb. He saw the first one detonated in the Trinity nuclear test in July 1945, and prepared the Fat Man bomb that was used in the bombing of Nagasaki. After the war, he served at Los Alamos as a group leader, and was involved in the design of the hydrogen bomb. In 1955, he became the head of its Nuclear Rocket Propulsion (N) Division, which developed the first nuclear-powered rockets. He served as deputy director of the laboratory from 1972 until his retirement in 1974.

A dollar is a unit of reactivity for a nuclear reactor, calibrated to the interval between the conditions of criticality and prompt criticality. Prompt criticality will result in an extremely rapid power rise, with the resultant destruction of the reactor, unless it is specifically designed to tolerate the condition. A cent is 1100 of a dollar.

<span class="mw-page-title-main">Kilopower</span> NASA project aimed at producing a nuclear reactor for space

Kilopower is an experimental U.S. project to make new nuclear reactors for space travel. The project started in October 2015, led by NASA and the DoE’s National Nuclear Security Administration (NNSA). As of 2017, the Kilopower reactors were intended to come in four sizes, able to produce from one to ten kilowatts of electrical power (1–10 kWe) continuously for twelve to fifteen years. The fission reactor uses uranium-235 to generate heat that is carried to the Stirling converters with passive sodium heat pipes. In 2018, positive test results for the Kilopower Reactor Using Stirling Technology (KRUSTY) demonstration reactor were announced.

Dwight Smith Young was an American "carpenter, photographer, archaeologist, cook, meteorologist, poet and self-made physicist" who took part in the Manhattan Project. He was given the nickname "The Hermit of Pajarito Canyon" after making his home in an old log cabin in a remote canyon on the Los Alamos testing site from roughly 1946 to 1952.

References

  1. 1 2 3 Malenfant, R. E. (June 1981). "Los Alamos Critical Assemblies Facility" (PDF). Los Alamos National Laboratory. LA-872-MS. doi:10.2172/6463833. S2CID   106391822.
  2. Loaiza, David; Gehman, Daniel (2006). "End of an Era for the Los Alamos Critical Experiments Facility: History of critical assemblies and experiments (1946–2004)". Annals of Nuclear Energy. 33 (17–18): 1339–1359. doi:10.1016/j.anucene.2006.09.009.
  3. Hayes, David K.; Myers (16 July 2012). "National Criticality Experiments Research Center: Capability and Status". Institute of Nuclear Materials Management 53rd Annual Meeting (LA-UR-12-22906). Retrieved February 16, 2024.
  4. 1 2 Gibson, Marc A.; Briggs, Maxwell H.; Sanzi, James L.; Brace, Michael H. (December 2013). "Heat Pipe Powered Stirling Conversion for the Demonstration Using Flattop Fission (DUFF) Test" (PDF). Albuquerque: American Nuclear Society. Nuclear and Emerging Technologies for Space (NETS-2013), NASA.