Flipped SU(5)

Last updated

The Flipped SU(5) model is a grand unified theory (GUT) first contemplated by Stephen Barr in 1982, [1] and by Dimitri Nanopoulos and others in 1984. [2] [3] Ignatios Antoniadis, John Ellis, John Hagelin, and Dimitri Nanopoulos developed the supersymmetric flipped SU(5), derived from the deeper-level superstring. [4] [5]

Contents

In 2010, efforts to explain the theoretical underpinnings for observed neutrino masses were being developed in the context of supersymmetric flipped SU(5). [6]

Flipped SU(5) is not a fully unified model, because the U(1)Y factor of the Standard Model gauge group is within the U(1) factor of the GUT group. The addition of states below Mx in this model, while solving certain threshold correction issues in string theory, makes the model merely descriptive, rather than predictive. [7]

The model

The flipped SU(5) model states that the gauge group is:

(SU(5) × U(1) χ)/Z5

Fermions form three families, each consisting of the representations

5−3 for the lepton doublet, L, and the up quarks uc;
101 for the quark doublet, Q, the down quark, dc and the right-handed neutrino, N;
15 for the charged leptons, ec.

This assignment includes three right-handed neutrinos, which have never been observed, but are often postulated to explain the lightness of the observed neutrinos and neutrino oscillations. There is also a 101 and/or 10−1 called the Higgs fields which acquire a VEV, yielding the spontaneous symmetry breaking

(SU(5) × U(1)χ)/Z5 → (SU(3) × SU(2) × U(1)Y)/Z6

The SU(5) representations transform under this subgroup as the reducible representation as follows:

(uc and l)
(q, dc and νc)
(ec)
.

Comparison with the standard SU(5)

The name "flipped" SU(5) arose in comparison to the "standard" SU(5) Georgi–Glashow model, in which uc and dc quark are respectively assigned to the 10 and 5 representation. In comparison with the standard SU(5), the flipped SU(5) can accomplish the spontaneous symmetry breaking using Higgs fields of dimension 10, while the standard SU(5) typically requires a 24-dimensional Higgs. [8]

The sign convention for U(1)χ varies from article/book to article.

The hypercharge Y/2 is a linear combination (sum) of the following:

There are also the additional fields 5−2 and 52 containing the electroweak Higgs doublets.

Calling the representations for example, 5−3 and 240 is purely a physicist's convention, not a mathematician's convention, where representations are either labelled by Young tableaux or Dynkin diagrams with numbers on their vertices, and is a standard used by GUT theorists.

Since the homotopy group

this model does not predict monopoles. See 't Hooft–Polyakov monopole.

Dimension 6 proton decay mediated by the X boson
(
3
,
2
)
1
6
{\displaystyle (3,2)_{\frac {1}{6}}}
in flipped SU(5) GUT Proton decay3.svg
Dimension 6 proton decay mediated by the X boson in flipped SU(5) GUT

Minimal supersymmetric flipped SU(5)

Spacetime

The N = 1 superspace extension of 3 + 1 Minkowski spacetime

Spatial symmetry

N = 1 SUSY over 3 + 1 Minkowski spacetime with R-symmetry

Gauge symmetry group

(SU(5) × U(1)χ)/Z5

Global internal symmetry

Z2 (matter parity) not related to U(1)R in any way for this particular model

Vector superfields

Those associated with the SU(5) × U(1)χ gauge symmetry

Chiral superfields

As complex representations:

labeldescriptionmultiplicitySU(5) × U(1)χ repZ2 repU(1)R
10HGUT Higgs field1101+0
10HGUT Higgs field110−1+0
Huelectroweak Higgs field152+2
Hdelectroweak Higgs field15−2+2
5matter fields35−3-0
10matter fields3101-0
1left-handed positron315-0
φsterile neutrino (optional)310-2
Ssinglet110+2

Superpotential

A generic invariant renormalizable superpotential is a (complex) SU(5) × U(1)χ × Z2 invariant cubic polynomial in the superfields which has an R-charge of 2. It is a linear combination of the following terms:

The second column expands each term in index notation (neglecting the proper normalization coefficient). i and j are the generation indices. The coupling Hd10i10j has coefficients which are symmetric in i and j.

In those models without the optional φ sterile neutrinos, we add the nonrenormalizable couplings instead.

These couplings do break the R-symmetry.

See also

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in the defining representation.

The Cayley–Purser algorithm was a public-key cryptography algorithm published in early 1999 by 16-year-old Irishwoman Sarah Flannery, based on an unpublished work by Michael Purser, founder of Baltimore Technologies, a Dublin data security company. Flannery named it for mathematician Arthur Cayley. It has since been found to be flawed as a public-key algorithm, but was the subject of considerable media attention.

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

In theoretical physics, a super-Poincaré algebra is an extension of the Poincaré algebra to incorporate supersymmetry, a relation between bosons and fermions. They are examples of supersymmetry algebras, and are Lie superalgebras. Thus a super-Poincaré algebra is a Z2-graded vector space with a graded Lie bracket such that the even part is a Lie algebra containing the Poincaré algebra, and the odd part is built from spinors on which there is an anticommutation relation with values in the even part.

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In mathematics, compact quantum groups are generalisations of compact groups, where the commutative -algebra of continuous complex-valued functions on a compact group is generalised to an abstract structure on a not-necessarily commutative unital -algebra, which plays the role of the "algebra of continuous complex-valued functions on the compact quantum group".

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

The neutrino theory of light is the proposal that the photon is a composite particle formed of a neutrino–antineutrino pair. It is based on the idea that emission and absorption of a photon corresponds to the creation and annihilation of a particle–antiparticle pair. The neutrino theory of light is not currently accepted as part of mainstream physics, as according to the Standard Model the photon is an elementary particle, a gauge boson.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of eleven-dimensional supergravity.

In complex geometry, the lemma is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .

In supersymmetry, type IIA supergravity is the unique supergravity in ten dimensions with two supercharges of opposite chirality. It was first constructed in 1984 by a dimensional reduction of eleven-dimensional supergravity on a circle. The other supergravities in ten dimensions are type IIB supergravity, which has two supercharges of the same chirality, and type I supergravity, which has a single supercharge. In 1986 a deformation of the theory was discovered which gives mass to one of the fields and is known as massive type IIA supergravity. Type IIA supergravity plays a very important role in string theory as it is the low-energy limit of type IIA string theory.

References

  1. Barr, S.M. (1982). "A new symmetry breaking pattern for SO(10) and proton decay". Physics Letters B. 112 (3): 219–222. doi:10.1016/0370-2693(82)90966-2.
  2. Derendinger, J.-P.; Kim, Jihn E.; Nanopoulos, D.V. (1984). "Anti-Su(5)". Physics Letters B. 139 (3): 170–176. doi:10.1016/0370-2693(84)91238-3.
  3. Stenger, Victor J., Quantum Gods: Creation, Chaos and the Search for Cosmic Consciousness, Prometheus Books, 2009, 61. ISBN   978-1-59102-713-3
  4. Antoniadis, I.; Ellis, John; Hagelin, J.S.; Nanopoulos, D.V. (1988). "GUT model-building with fermionic four-dimensional strings". Physics Letters B. 205 (4): 459–465. doi:10.1016/0370-2693(88)90978-1. OSTI   1448495.
  5. Freedman, D. H. "The new theory of everything", Discover, 1991, 54–61.
  6. Rizos, J.; Tamvakis, K. (2010). "Hierarchical neutrino masses and mixing in flipped-SU(5)". Physics Letters B. 685 (1): 67–71. arXiv: 0912.3997 . doi:10.1016/j.physletb.2010.01.038. ISSN   0370-2693. S2CID   119210871.
  7. Barcow, Timothy et al., Electroweak symmetry breaking and new physics at the TeV scale World Scientific, 1996, 194. ISBN   978-981-02-2631-2
  8. L.~F.~Li, ``Group Theory of the Spontaneously Broken Gauge Symmetries, Phys. Rev. D 9, 1723-1739 (1974) doi:10.1103/PhysRevD.9.1723