In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.
The induced representation is a related operation that forms a representation of the whole group from a representation of a subgroup. The relation between restriction and induction is described by Frobenius reciprocity and the Mackey theorem. Restriction to a normal subgroup behaves particularly well and is often called Clifford theory after the theorem of A. H. Clifford. [1] Restriction can be generalized to other group homomorphisms and to other rings.
For any group G, its subgroup H, and a linear representation ρ of G, the restriction of ρ to H, denoted
is a representation of H on the same vector space by the same operators:
Classical branching rules describe the restriction of an irreducible complex representation (π, V) of a classical group G to a classical subgroup H, i.e. the multiplicity with which an irreducible representation (σ, W) of H occurs in π. By Frobenius reciprocity for compact groups, this is equivalent to finding the multiplicity of π in the unitary representation induced from σ. Branching rules for the classical groups were determined by
The results are usually expressed graphically using Young diagrams to encode the signatures used classically to label irreducible representations, familiar from classical invariant theory. Hermann Weyl and Richard Brauer discovered a systematic method for determining the branching rule when the groups G and H share a common maximal torus: in this case the Weyl group of H is a subgroup of that of G, so that the rule can be deduced from the Weyl character formula. [2] [3] A systematic modern interpretation has been given by Howe (1995) in the context of his theory of dual pairs. The special case where σ is the trivial representation of H was first used extensively by Hua in his work on the Szegő kernels of bounded symmetric domains in several complex variables, where the Shilov boundary has the form G/H. [4] [5] More generally the Cartan-Helgason theorem gives the decomposition when G/H is a compact symmetric space, in which case all multiplicities are one; [6] a generalization to arbitrary σ has since been obtained by Kostant (2004). Similar geometric considerations have also been used by Knapp (2003) to rederive Littlewood's rules, which involve the celebrated Littlewood–Richardson rules for tensoring irreducible representations of the unitary groups. Littelmann (1995) has found generalizations of these rules to arbitrary compact semisimple Lie groups, using his path model, an approach to representation theory close in spirit to the theory of crystal bases of Lusztig and Kashiwara. His methods yield branching rules for restrictions to subgroups containing a maximal torus. The study of branching rules is important in classical invariant theory and its modern counterpart, algebraic combinatorics. [7] [8]
Example. The unitary group U(N) has irreducible representations labelled by signatures
where the fi are integers. In fact if a unitary matrix U has eigenvalues zi, then the character of the corresponding irreducible representation πf is given by
The branching rule from U(N) to U(N – 1) states that
Example. The unitary symplectic group or quaternionic unitary group, denoted Sp(N) or U(N, H), is the group of all transformations of HN which commute with right multiplication by the quaternions H and preserve the H-valued hermitian inner product
on HN, where q* denotes the quaternion conjugate to q. Realizing quaternions as 2 x 2 complex matrices, the group Sp(N) is just the group of block matrices (qij) in SU(2N) with
where αij and βij are complex numbers.
Each matrix U in Sp(N) is conjugate to a block diagonal matrix with entries
where |zi| = 1. Thus the eigenvalues of U are (zi±1). The irreducible representations of Sp(N) are labelled by signatures
where the fi are integers. The character of the corresponding irreducible representation σf is given by [9]
The branching rule from Sp(N) to Sp(N – 1) states that [10]
Here fN + 1 = 0 and the multiplicity m(f, g) is given by
where
is the non-increasing rearrangement of the 2N non-negative integers (fi), (gj) and 0.
Example. The branching from U(2N) to Sp(N) relies on two identities of Littlewood: [11] [12] [13] [14]
where Πf,0 is the irreducible representation of U(2N) with signature f1 ≥ ··· ≥ fN ≥ 0 ≥ ··· ≥ 0.
where fi ≥ 0.
The branching rule from U(2N) to Sp(N) is given by
where all the signature are non-negative and the coefficient M (g, h; k) is the multiplicity of the irreducible representation πk of U(N) in the tensor product πgπh. It is given combinatorially by the Littlewood–Richardson rule, the number of lattice permutations of the skew diagram k/h of weight g. [8]
There is an extension of Littlewood's branching rule to arbitrary signatures due to Sundaram (1990 , p. 203). The Littlewood–Richardson coefficients M (g, h; f) are extended to allow the signature f to have 2N parts but restricting g to have even column-lengths (g2i – 1 = g2i). In this case the formula reads
where MN (g, h; f) counts the number of lattice permutations of f/h of weight g are counted for which 2j + 1 appears no lower than row N + j of f for 1 ≤ j ≤ |g|/2.
Example. The special orthogonal group SO(N) has irreducible ordinary and spin representations labelled by signatures [2] [7] [15] [16]
The fi are taken in Z for ordinary representations and in ½ + Z for spin representations. In fact if an orthogonal matrix U has eigenvalues zi±1 for 1 ≤ i ≤ n, then the character of the corresponding irreducible representation πf is given by
for N = 2n and by
for N = 2n+1.
The branching rules from SO(N) to SO(N – 1) state that [17]
for N = 2n + 1 and
for N = 2n, where the differences fi − gi must be integers.
Since the branching rules from to or to have multiplicity one, the irreducible summands corresponding to smaller and smaller N will eventually terminate in one-dimensional subspaces. In this way Gelfand and Tsetlin were able to obtain a basis of any irreducible representation of or labelled by a chain of interleaved signatures, called a Gelfand–Tsetlin pattern. Explicit formulas for the action of the Lie algebra on the Gelfand–Tsetlin basis are given in Želobenko (1973). Specifically, for , the Gelfand-Testlin basis of the irreducible representation of with dimension is given by the complex spherical harmonics .
For the remaining classical group , the branching is no longer multiplicity free, so that if V and W are irreducible representation of and the space of intertwiners can have dimension greater than one. It turns out that the Yangian , a Hopf algebra introduced by Ludwig Faddeev and collaborators, acts irreducibly on this multiplicity space, a fact which enabled Molev (2006) to extend the construction of Gelfand–Tsetlin bases to . [18]
In 1937 Alfred H. Clifford proved the following result on the restriction of finite-dimensional irreducible representations from a group G to a normal subgroup N of finite index: [19]
Theorem. Let π: G GL(n,K) be an irreducible representation with K a field. Then the restriction of π to N breaks up into a direct sum of irreducible representations of N of equal dimensions. These irreducible representations of N lie in one orbit for the action of G by conjugation on the equivalence classes of irreducible representations of N. In particular the number of distinct summands is no greater than the index of N in G.
Twenty years later George Mackey found a more precise version of this result for the restriction of irreducible unitary representations of locally compact groups to closed normal subgroups in what has become known as the "Mackey machine" or "Mackey normal subgroup analysis". [20]
From the point of view of category theory, restriction is an instance of a forgetful functor. This functor is exact, and its left adjoint functor is called induction. The relation between restriction and induction in various contexts is called the Frobenius reciprocity. Taken together, the operations of induction and restriction form a powerful set of tools for analyzing representations. This is especially true whenever the representations have the property of complete reducibility, for example, in representation theory of finite groups over a field of characteristic zero.
This rather evident construction may be extended in numerous and significant ways. For instance we may take any group homomorphism φ from H to G, instead of the inclusion map, and define the restricted representation of H by the composition
We may also apply the idea to other categories in abstract algebra: associative algebras, rings, Lie algebras, Lie superalgebras, Hopf algebras to name some. Representations or modules restrict to subobjects, or via homomorphisms.
In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.
In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.
In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group
In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups.
In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, from higher sheaf cohomology groups associated to such bundles. It is built on the earlier Borel–Weil theorem of Armand Borel and André Weil, dealing just with the space of sections, the extension to higher cohomology groups being provided by Raoul Bott. One can equivalently, through Serre's GAGA, view this as a result in complex algebraic geometry in the Zariski topology.
In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.
In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, if G is a group and ρ is a linear representation of it on the vector space V, then the dual representationρ* is defined over the dual vector space V* as follows:
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.
In mathematics, a Gelfand pair is a pair (G,K ) consisting of a group G and a subgroup K (called an Euler subgroup of G) that satisfies a certain property on restricted representations. The theory of Gelfand pairs is closely related to the topic of spherical functions in the classical theory of special functions, and to the theory of Riemannian symmetric spaces in differential geometry. Broadly speaking, the theory exists to abstract from these theories their content in terms of harmonic analysis and representation theory.
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.
In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.
In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.
This is a glossary of representation theory in mathematics.
In mathematics, the Gan–Gross–Prasad conjecture is a restriction problem in the representation theory of real or p-adic Lie groups posed by Gan Wee Teck, Benedict Gross, and Dipendra Prasad. The problem originated from a conjecture of Gross and Prasad for special orthogonal groups but was later generalized to include all four classical groups. In the cases considered, it is known that the multiplicity of the restrictions is at most one and the conjecture describes when the multiplicity is precisely one.
In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are