Roger Evans Howe | |
---|---|
Born | May 23, 1945 |
Nationality | American |
Alma mater | |
Known for | Representation theory |
Awards | NAS Member (1994) AAAS Fellow (1993) |
Scientific career | |
Fields | Mathematics |
Institutions | |
Thesis | On representations of nilpotent groups (1969) |
Doctoral advisor | Calvin C. Moore |
Doctoral students | |
Website | directory |
Roger Evans Howe (born May 23, 1945) is the William R. Kenan, Jr. Professor Emeritus of Mathematics at Yale University, and Curtis D. Robert Endowed Chair in Mathematics Education at Texas A&M University. He is known for his contributions to representation theory, in particular for the notion of a reductive dual pair and the Howe correspondence, and his contributions to mathematics education. [1]
He attended Ithaca High School, then Harvard University as an undergraduate, becoming a Putnam Fellow in 1964. [2] He obtained his Ph.D. from University of California, Berkeley in 1969. [3] His thesis, titled On representations of nilpotent groups, was written under the supervision of Calvin Moore. Between 1969 and 1974, Howe taught at the State University of New York in Stony Brook before joining the Yale faculty in 1974. His doctoral students include Ju-Lee Kim, Jian-Shu Li, Zeev Rudnick, Eng-Chye Tan, and Chen-Bo Zhu. He moved to Texas A&M University in 2015. [4]
He has been a fellow of the American Academy of Arts and Sciences since 1993, and a member of the National Academy of Sciences since 1994.[ citation needed ]
Howe received a Lester R. Ford Award in 1984. [5] In 2006 he was awarded the American Mathematical Society Distinguished Public Service Award in recognition of his "multifaceted contributions to mathematics and to mathematics education." [6] In 2012 he became a fellow of the American Mathematical Society. [7] In 2015 he received the inaugural Award for Excellence in Mathematics Education. [8]
A conference in his honor was held at the National University of Singapore in 2006, [9] and at Yale University in 2015. [10]
In mathematics, a unitary representation of a group G is a linear representation π of G on a complex Hilbert space V such that π(g) is a unitary operator for every g ∈ G. The general theory is well-developed in the case that G is a locally compact (Hausdorff) topological group and the representations are strongly continuous.
Harish-Chandra Mehrotra FRS was an Indian-American mathematician and physicist who did fundamental work in representation theory, especially harmonic analysis on semisimple Lie groups.
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups.
In group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics. For example, in case of explicit symmetry breaking, the symmetry group of the problem is reduced from the whole group to one of its subgroups. In quantum mechanics, this reduction in symmetry appears as a splitting of degenerate energy levels into multiplets, as in the Stark or Zeeman effect.
In mathematics, the unitarian trick is a device in the representation theory of Lie groups, introduced by Adolf Hurwitz (1897) for the special linear group and by Hermann Weyl for general semisimple groups. It applies to show that the representation theory of some group G is in a qualitative way controlled by that of some other compact group K. An important example is that in which G is the complex general linear group, and K the unitary group acting on vectors of the same size. From the fact that the representations of K are completely reducible, the same is concluded for those of G, at least in finite dimensions.
In mathematics, the theta correspondence or Howe correspondence is a mathematical relation between representations of two groups of a reductive dual pair. The local theta correspondence relates irreducible admissible representations over a local field, while the global theta correspondence relates irreducible automorphic representations over a global field.
In mathematics, a Gelfand pair is a pair (G,K ) consisting of a group G and a subgroup K (called an Euler subgroup of G) that satisfies a certain property on restricted representations. The theory of Gelfand pairs is closely related to the topic of spherical functions in the classical theory of special functions, and to the theory of Riemannian symmetric spaces in differential geometry. Broadly speaking, the theory exists to abstract from these theories their content in terms of harmonic analysis and representation theory.
In mathematics, the orbit method establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: orbits of the action of the group on the dual space of its Lie algebra. The theory was introduced by Kirillov for nilpotent groups and later extended by Bertram Kostant, Louis Auslander, Lajos Pukánszky and others to the case of solvable groups. Roger Howe found a version of the orbit method that applies to p-adic Lie groups. David Vogan proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.
Henryk Iwaniec is a Polish-American mathematician, and since 1987 a professor at Rutgers University. He is a member of the American Academy of Arts and Sciences and Polish Academy of Sciences. He has made important contributions to analytic and algebraic number theory as well as harmonic analysis. He is the recipient of Cole Prize (2002), Steele Prize (2011), and Shaw Prize (2015).
In mathematics, a tempered representation of a linear semisimple Lie group is a representation that has a basis whose matrix coefficients lie in the Lp space
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.
Li Jianshu, also known as Jian-Shu Li, is a Chinese mathematician working in representation theory and automorphic forms. He is the founding director of the Institute for Advanced Study in Mathematics at Zhejiang University and Professor Emeritus at the Hong Kong University of Science and Technology.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.
Tan Eng Chye is a Singaporean mathematician and university administrator who has been serving as the third president of the National University of Singapore since 2018. Prior to his presidency, he served as the deputy president of academic affairs and provost at the National University of Singapore.
In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory.
The Classical Groups: Their Invariants and Representations is a mathematics book by Hermann Weyl (1939), which describes classical invariant theory in terms of representation theory. It is largely responsible for the revival of interest in invariant theory, which had been almost killed off by David Hilbert's solution of its main problems in the 1890s.
Nolan Russell Wallach is a mathematician known for work in the representation theory of reductive algebraic groups. He is the author of the 2-volume treatise Real Reductive Groups.
Daniel Willis Bump is a mathematician who is a professor at Stanford University. He is a fellow of the American Mathematical Society since 2015, for "contributions to number theory, representation theory, combinatorics, and random matrix theory, as well as mathematical exposition".
Colette Moeglin is a French mathematician, working in the field of automorphic forms, a topic at the intersection of number theory and representation theory.
Jeb F. Willenbring is a Full Professor and Associate Chair for Graduate Mathematics at the University of Wisconsin-Milwaukee. Most of his research falls within the categories of Representation Theory, Discrete Mathematics, and Mathematical Physics. His current research consists of several collaborations concerning algebraic combinatorics and various aspects of Representation Theory. Willenbring has published multiple papers concerning the nature of Littlewood-Richardson coefficients, a particular focus of his, in collaboration with Professors Pamela Harris, Mark Colorusso, and William Erickson.