Multiplet

Last updated

In physics and particularly in particle physics, a multiplet is the state space for 'internal' degrees of freedom of a particle, that is, degrees of freedom associated to a particle itself, as opposed to 'external' degrees of freedom such as the particle's position in space. Examples of such degrees of freedom are the spin state of a particle in quantum mechanics, or the color, isospin and hypercharge state of particles in the Standard model of particle physics. Formally, we describe this state space by a vector space which carries the action of a group of continuous symmetries.

Contents

Mathematical formulation

Mathematically, multiplets are described via representations of a Lie group or its corresponding Lie algebra, and is usually used to refer to irreducible representations (irreps, for short).

At the group level, this is a triplet where

At the algebra level, this is a triplet , where

The symbol is used for both Lie algebras and Lie groups as, at least in finite dimension, there is a well understood correspondence between Lie groups and Lie algebras.

In mathematics, it is common to refer to the homomorphism as the representation, for example in the sentence 'consider a representation ', and the vector space is referred to as the 'representation space'. In physics sometimes the vector space is referred to as the representation, for example in the sentence 'we model the particle as transforming in the singlet representation', or even to refer to a quantum field which takes values in such a representation, and the physical particles which are modelled by such a quantum field.

For an irreducible representation, an -plet refers to an dimensional irreducible representation. Generally, a group may have multiple non-isomorphic representations of the same dimension, so this does not fully characterize the representation. An exception is which has exactly one irreducible representation of dimension for each non-negative integer .

For example, consider real three-dimensional space, . The group of 3D rotations SO(3) acts naturally on this space as a group of matrices. This explicit realisation of the rotation group is known as the fundamental representation , so is a representation space. The full data of the representation is . Since the dimension of this representation space is 3, this is known as the triplet representation for , and it is common to denote this as .

Application to theoretical physics

For applications to theoretical physics, we can restrict our attention to the representation theory of a handful of physically important groups. Many of these have well understood representation theory:

These groups all appear in the theory of the Standard model. For theories which extend these symmetries, the representation theory of some other groups might be considered:

Physics

Quantum field theory

In quantum physics, the mathematical notion is usually applied to representations of the gauge group. For example, an gauge theory will have multiplets which are fields whose representation of is determined by the single half-integer number , the isospin. Since irreducible representations are isomorphic to the th symmetric power of the fundamental representation, every field has symmetrized internal indices.

Fields also transform under representations of the Lorentz group , or more generally its spin group which can be identified with due to an exceptional isomorphism. Examples include scalar fields, commonly denoted , which transform in the trivial representation, vector fields (strictly, this might be more accurately labelled a covector field), which transforms as a 4-vector, and spinor fields such as Dirac or Weyl spinors which transform in representations of . A right-handed Weyl spinor transforms in the fundamental representation, , of .

Beware that besides the Lorentz group, a field can transform under the action of a gauge group. For example, a scalar field , where is a spacetime point, might have an isospin state taking values in the fundamental representation of . Then is a vector valued function of spacetime, but is still referred to as a scalar field, as it transforms trivially under Lorentz transformations.

In quantum field theory different particles correspond one to one with gauged fields transforming in irreducible representations of the internal and Lorentz group. Thus, a multiplet has also come to describe a collection of subatomic particles described by these representations.

Examples

The best known example is a spin multiplet, which describes symmetries of a group representation of an SU(2) subgroup of the Lorentz algebra, which is used to define spin quantization. A spin singlet is a trivial representation, a spin doublet is a fundamental representation and a spin triplet is in the vector representation or adjoint representation.

In QCD, quarks are in a multiplet of SU(3), specifically the three-dimensional fundamental representation.

Other uses

Spectroscopy

In spectroscopy, particularly Gamma spectroscopy and X-ray spectroscopy, a multiplet is a group of related or unresolvable spectral lines. Where the number of unresolved lines is small, these are often referred to specifically as doublet or triplet peaks, while multiplet is used to describe groups of peaks in any number.

Related Research Articles

<span class="mw-page-title-main">Group representation</span> Group homomorphism into the general linear group over a vector space

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself ; in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.

<span class="mw-page-title-main">Spinor</span> Non-tensorial representation of the spin group; represents fermions in physics

In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Poincaré group</span> Group of flat spacetime symmetries

The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our understanding of the most basic fundamentals of physics.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In the field of representation theory in mathematics, a projective representation of a group G on a vector space V over a field F is a group homomorphism from G to the projective linear group

<span class="mw-page-title-main">Irreducible representation</span> Type of group and algebra representation

In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation or irrep of an algebraic structure is a nonzero representation that has no proper nontrivial subrepresentation , with closed under the action of .

<span class="mw-page-title-main">Compact group</span> Topological group with compact topology

In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, if G is a group and ρ is a linear representation of it on the vector space V, then the dual representationρ* is defined over the dual vector space V* as follows:

<span class="mw-page-title-main">Representation theory of the Lorentz group</span> Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Dirac in 1928.

<span class="mw-page-title-main">Particle physics and representation theory</span> Physics-mathematics connection

There is a natural connection between particle physics and representation theory, as first noted in the 1930s by Eugene Wigner. It links the properties of elementary particles to the structure of Lie groups and Lie algebras. According to this connection, the different quantum states of an elementary particle give rise to an irreducible representation of the Poincaré group. Moreover, the properties of the various particles, including their spectra, can be related to representations of Lie algebras, corresponding to "approximate symmetries" of the universe.

In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-1/2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.

Higher-dimensional supergravity is the supersymmetric generalization of general relativity in higher dimensions. Supergravity can be formulated in any number of dimensions up to eleven. This article focuses upon supergravity (SUGRA) in greater than four dimensions.

In mathematics and physics, super Minkowski space or Minkowski superspace is a supersymmetric extension of Minkowski space, sometimes used as the base manifold for superfields. It is acted on by the super Poincaré algebra.

<span class="mw-page-title-main">Dirac equation in curved spacetime</span> Generalization of the Dirac equation

In mathematical physics, the Dirac equation in curved spacetime is a generalization of the Dirac equation from flat spacetime to curved spacetime, a general Lorentzian manifold.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model.

References

See also