In mathematics, Clifford theory, introduced by Alfred H. Clifford (1937), describes the relation between representations of a group and those of a normal subgroup.
Alfred H. Clifford proved the following result on the restriction of finite-dimensional irreducible representations from a group G to a normal subgroup N of finite index:
Theorem. Let π: G → GL(n,K) be an irreducible representation with K a field. Then the restriction of π to N breaks up into a direct sum of irreducible representations of N of equal dimensions. These irreducible representations of N lie in one orbit for the action of G by conjugation on the equivalence classes of irreducible representations of N. In particular the number of pairwise nonisomorphic summands is no greater than the index of N in G.
Clifford's theorem yields information about the restriction of a complex irreducible character of a finite group G to a normal subgroup N. If μ is a complex character of N, then for a fixed element g of G, another character, μ(g), of N may be constructed by setting
for all n in N. The character μ(g) is irreducible if and only if μ is. Clifford's theorem states that if χ is a complex irreducible character of G, and μ is an irreducible character of N with
where e and t are positive integers, and each gi is an element of G. The integers e and t both divide the index [G:N]. The integer t is the index of a subgroup of G, containing N, known as the inertial subgroup of μ. This is
and is often denoted by
The elements gi may be taken to be representatives of all the right cosets of the subgroup IG(μ) in G.
In fact, the integer e divides the index
though the proof of this fact requires some use of Schur's theory of projective representations.
The proof of Clifford's theorem is best explained in terms of modules (and the module-theoretic version works for irreducible modular representations). Let K be a field, V be an irreducible K[G]-module, VN be its restriction to N and U be an irreducible K[N]-submodule of VN. For each g in G and n in N, the equality holds, since N was a normal subgroup of G. Therefore, g.U is an irreducible K[N]-submodule of VN, and is a K[G]-submodule of V, hence must be all of V by irreducibility. Now VN is expressed as a sum of irreducible submodules, and this expression may be refined to a direct sum. The proof of the character-theoretic statement of the theorem may now be completed in the case K = C. Let χ be the character of G afforded by V and μ be the character of N afforded by U. For each g in G, the C[N]-submodule g.U affords the character μ(g) and . The respective equalities follow because χ is a class-function of G and N is a normal subgroup. The integer e appearing in the statement of the theorem is this common multiplicity.
A corollary of Clifford's theorem, which is often exploited, is that the irreducible character χ appearing in the theorem is induced from an irreducible character of the inertial subgroup IG(μ). If, for example, the irreducible character χ is primitive (that is, χ is not induced from any proper subgroup of G), then G = IG(μ) and χN = eμ. A case where this property of primitive characters is used particularly frequently is when N is Abelian and χ is faithful (that is, its kernel contains just the identity element). In that case, μ is linear, N is represented by scalar matrices in any representation affording character χ and N is thus contained in the center of G. For example, if G is the symmetric group S4, then G has a faithful complex irreducible character χ of degree 3. There is an Abelian normal subgroup N of order 4 (a Klein 4-subgroup) which is not contained in the center of G. Hence χ is induced from a character of a proper subgroup of G containing N. The only possibility is that χ is induced from a linear character of a Sylow 2-subgroup of G.
Clifford's theorem has led to a branch of representation theory in its own right, now known as Clifford theory. This is particularly relevant to the representation theory of finite solvable groups, where normal subgroups usually abound. For more general finite groups, Clifford theory often allows representation-theoretic questions to be reduced to questions about groups that are close (in a sense which can be made precise) to being simple.
George Mackey (1976) found a more precise version of this result for the restriction of irreducible unitary representations of locally compact groups to closed normal subgroups in what has become known as the "Mackey machine" or "Mackey normal subgroup analysis".
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation
In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.
In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.
In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.
In mathematics, and especially the discipline of representation theory, the Schur indicator, named after Issai Schur, or Frobenius–Schur indicator describes what invariant bilinear forms a given irreducible representation of a compact group on a complex vector space has. It can be used to classify the irreducible representations of compact groups on real vector spaces.
In group theory, a branch of abstract algebra, a character table is a two-dimensional table whose rows correspond to irreducible representations, and whose columns correspond to conjugacy classes of group elements. The entries consist of characters, the traces of the matrices representing group elements of the column's class in the given row's group representation. In chemistry, crystallography, and spectroscopy, character tables of point groups are used to classify e.g. molecular vibrations according to their symmetry, and to predict whether a transition between two states is forbidden for symmetry reasons. Many university level textbooks on physical chemistry, quantum chemistry, spectroscopy and inorganic chemistry devote a chapter to the use of symmetry group character tables.
The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.
In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.
The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.
In mathematics, Bochner's theorem characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive-definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group. The case of sequences was first established by Gustav Herglotz
Brauer's theorem on induced characters, often known as Brauer's induction theorem, and named after Richard Brauer, is a basic result in the branch of mathematics known as character theory, within representation theory of a finite group.
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem. This makes it especially important in the theory of quantum computing because Shor's algorithm for factoring in quantum computing is an instance of the hidden subgroup problem for finite abelian groups, while the other problems correspond to finite groups that are not abelian.
In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).
In mathematics, the main results concerning irreducible unitary representations of the Lie group SL(2,R) are due to Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).
In mathematics, the McKay graph of a finite-dimensional representation V of a finite group G is a weighted quiver encoding the structure of the representation theory of G. Each node represents an irreducible representation of G. If χ i, χ j are irreducible representations of G, then there is an arrow from χ i to χ j if and only if χ j is a constituent of the tensor product Then the weight nij of the arrow is the number of times this constituent appears in For finite subgroups H of the McKay graph of H is the McKay graph of the defining 2-dimensional representation of H.
This is a glossary of representation theory in mathematics.
In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.