Flow net

Last updated

A flow net is a graphical representation of two-dimensional steady-state groundwater flow through aquifers.

Contents

Construction of a flow net is often used for solving groundwater flow problems where the geometry makes analytical solutions impractical. The method is often used in civil engineering, hydrogeology or soil mechanics as a first check for problems of flow under hydraulic structures like dams or sheet pile walls. As such, a grid obtained by drawing a series of equipotential lines is called a flow net. The flow net is an important tool in analysing two-dimensional irrotational flow problems. Flow net technique is a graphical representation method.

Basic method

The method consists of filling the flow area with stream and equipotential lines, which are everywhere perpendicular to each other, making a curvilinear grid. Typically there are two surfaces (boundaries) which are at constant values of potential or hydraulic head (upstream and downstream ends), and the other surfaces are no-flow boundaries (i.e., impermeable; for example the bottom of the dam and the top of an impermeable bedrock layer), which define the sides of the outermost streamtubes (see figure 1 for a stereotypical flow net example).

Mathematically, the process of constructing a flow net consists of contouring the two harmonic or analytic functions of potential and stream function. These functions both satisfy the Laplace equation and the contour lines represent lines of constant head (equipotentials) and lines tangent to flowpaths (streamlines). Together, the potential function and the stream function form the complex potential, where the potential is the real part, and the stream function is the imaginary part.

The construction of a flow net provides an approximate solution to the flow problem, but it can be quite good even for problems with complex geometries by following a few simple rules (initially developed by Philipp Forchheimer around 1900, and later formalized by Arthur Casagrande in 1937) and a little practice:

Example flow nets

The first flow net pictured here (modified from Craig, 1997) illustrates and quantifies the flow which occurs under the dam (flow is assumed to be invariant along the axis of the dam valid near the middle of the dam); from the pool behind the dam (on the right) to the tailwater downstream from the dam (on the left).

There are 16 green equipotential lines (15 equal drops in hydraulic head) between the 5 m upstream head to the 1m downstream head (4 m / 15 head drops = 0.267 m head drop between each green line). The blue streamlines (equal changes in the streamfunction between the two no-flow boundaries) show the flowpath taken by water as it moves through the system; the streamlines are everywhere tangent to the flow velocity.

Example flow net 2, click to view full-size. Flownet pumping well.png
Example flow net 2, click to view full-size.

The second flow net pictured here (modified from Ferris, et al., 1962) shows a flow net being used to analyze map-view flow (invariant in the vertical direction), rather than a cross-section. Note that this problem has symmetry, and only the left or right portions of it needed to have been done. To create a flow net to a point sink (a singularity), there must be a recharge boundary nearby to provide water and allow a steady-state flowfield to develop.

Flow net results

Darcy's law describes the flow of water through the flow net. Since the head drops are uniform by construction, the gradient is inversely proportional to the size of the blocks. Big blocks mean there is a low gradient, and therefore low discharge (hydraulic conductivity is assumed constant here).

An equivalent amount of flow is passing through each streamtube (defined by two adjacent blue lines in diagram), therefore narrow streamtubes are located where there is more flow. The smallest squares in a flow net are located at points where the flow is concentrated (in this diagram they are near the tip of the cutoff wall, used to reduce dam underflow), and high flow at the land surface is often what the civil engineer is trying to avoid, being concerned about piping or dam failure.

Singularities

Irregular points (also called singularities) in the flow field occur when streamlines have kinks in them (the derivative doesn't exist at a point). This can happen where the bend is outward (e.g., the bottom of the cutoff wall in the figure above), and there is infinite flux at a point, or where the bend is inward (e.g., the corner just above and to the left of the cutoff wall in the figure above) where the flux is zero.

The second flow net illustrates a well, which is typically represented mathematically as a point source (the well shrinks to zero radius); this is a singularity because the flow is converging to a point, at that point the Laplace equation is not satisfied.

These points are mathematical artifacts of the equation used to solve the real-world problem, and do not actually mean that there is infinite or no flux at points in the subsurface. These types of points often do make other types of solutions (especially numeric) to these problems difficult, while the simple graphical technique handles them nicely.

Extensions to standard flow nets

Typically flow nets are constructed for homogeneous, isotropic porous media experiencing saturated flow to known boundaries. There are extensions to the basic method to allow some of these other cases to be solved:

Although the method is commonly used for these types of groundwater flow problems, it can be used for any problem which is described by the Laplace equation (), for example electric current flow through the earth.

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

<span class="mw-page-title-main">Hydrogeology</span> Study of the distribution and movement of groundwater

Hydrogeology is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust. The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably, though hydrogeology is the most commonly used.

In hydrogeology, an aquifer test is conducted to evaluate an aquifer by "stimulating" the aquifer through constant pumping, and observing the aquifer's "response" (drawdown) in observation wells. Aquifer testing is a common tool that hydrogeologists use to characterize a system of aquifers, aquitards and flow system boundaries.

In mathematics and mathematical physics, potential theory is the study of harmonic functions.

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations, including fluid mechanics, acoustics, electromagnetics, fracture mechanics, and contact mechanics.

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m−1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.

Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.

In hydrogeology, a slug test is a particular type of aquifer test where water is quickly added or removed from a groundwater well, and the change in hydraulic head is monitored through time, to determine the near-well aquifer characteristics. It is a method used by hydrogeologists and civil engineers to determine the transmissivity/hydraulic conductivity and storativity of the material the well is completed in.

<span class="mw-page-title-main">Analytic element method</span>

The analytic element method (AEM) is a numerical method used for the solution of partial differential equations. It was initially developed by O.D.L. Strack at the University of Minnesota. It is similar in nature to the boundary element method (BEM), as it does not rely upon the discretization of volumes or areas in the modeled system; only internal and external boundaries are discretized. One of the primary distinctions between AEM and BEMs is that the boundary integrals are calculated analytically. Although originally developed to model groundwater flow, AEM has subsequently been applied to other fields of study including studies of heat flow and conduction, periodic waves, and deformation by force.

The Dupuit–Forchheimer assumption holds that groundwater flows horizontally in an unconfined aquifer and that the groundwater discharge is proportional to the saturated aquifer thickness. It was formulated by Jules Dupuit and Philipp Forchheimer in the late 1800s to simplify groundwater flow equations for analytical solutions.

Groundwater discharge is the volumetric flow rate of groundwater through an aquifer.

Groundwater models are computer models of groundwater flow systems, and are used by hydrologists and hydrogeologists. Groundwater models are used to simulate and predict aquifer conditions.

The groundwater energy balance is the energy balance of a groundwater body in terms of incoming hydraulic energy associated with groundwater inflow into the body, energy associated with the outflow, energy conversion into heat due to friction of flow, and the resulting change of energy status and groundwater level.

<span class="mw-page-title-main">Hydrological model</span> Predicting and managing water resources

A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.

<span class="mw-page-title-main">Drainage equation</span> Equation used in drainage design

A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design.

<span class="mw-page-title-main">Singular boundary method</span>

In numerical analysis, the singular boundary method (SBM) belongs to a family of meshless boundary collocation techniques which include the method of fundamental solutions (MFS), boundary knot method (BKM), regularized meshless method (RMM), boundary particle method (BPM), modified MFS, and so on. This family of strong-form collocation methods is designed to avoid singular numerical integration and mesh generation in the traditional boundary element method (BEM) in the numerical solution of boundary value problems with boundary nodes, in which a fundamental solution of the governing equation is explicitly known.

In numerical mathematics, the regularized meshless method (RMM), also known as the singular meshless method or desingularized meshless method, is a meshless boundary collocation method designed to solve certain partial differential equations whose fundamental solution is explicitly known. The RMM is a strong-form collocation method with merits being meshless, integration-free, easy-to-implement, and high stability. Until now this method has been successfully applied to some typical problems, such as potential, acoustics, water wave, and inverse problems of bounded and unbounded domains.

Reactive transport modeling in porous media refers to the creation of computer models integrating chemical reaction with transport of fluids through the Earth's crust. Such models predict the distribution in space and time of the chemical reactions that occur along a flowpath. Reactive transport modeling in general can refer to many other processes, including reactive flow of chemicals through tanks, reactors, or membranes; particles and species in the atmosphere; gases exiting a smokestack; and migrating magma.

References

    See also