Fluorous chemistry

Last updated

Fluorous chemistry involves the use of perfluorinated compounds or perfluorinated substituents to facilitate recovery of a catalyst or reaction product. Perfluorinated groups impart unique physical properties including high solubility in perfluorinated solvents. This property can be useful in organic synthesis and separation methods such as solid phase extraction. [1] In practice, a perfluorinated alkyl group is incorporated into an otherwise conventional organic reagent as an affinity tag. These reagents can then be separated from organic solvents by extraction with fluorinated solvents such as perfluorohexane.

Contents

Applications

The utility of fluorous chemistry hinges on the partitioning modality distinct from polar/non-polar or hydrophilic/hydrophobic. A major application of fluorous chemistry involves the use of fluorosurfactant perfluorooctanoic acid (PFOA) to facilitate the production of Teflon. The technology is controversial because of the slow rates of biodegradation of such compounds. [2]

Ponytails

In compounds exploited in academic fluorous chemistry, molecules comprise both nonfluorous and fluorous domains. The fluorous domain is often a substituent intended to confer solubility in the fluorocarbon medium. Such perfluorosubstituents are often introduced in what are called ponytails. Typical fluorous ponytails have the formula CF3(CF2)n(CH2)m- where n is about 10 and m is about 3. [1]

Through the use of high affinity of fluorous tags (ponytails) for fluorous phases or fluorous-derivatized solid phases allows for near complete recovery of the tagged reagent (i.e., near complete reduction in a chemical waste stream), making the use of fluorous chemistry techniques a popular topic in green chemistry. [3]

Partition coefficients

The fluorous character of a molecule can be assessed by its partition coefficient between a perfluorocarbon and a hydrocarbon. In the following table, the data are for perfluoromethylcyclohexane:toluene. [1]

solute partition coefficient
for CF3C6F11:toluene
octane 5.4:94.6
CH3(CH2)13CH=CH20.9:99.1
C6H66:94
C6F628.0:72.0
C10F22(CH2)3OH80.5:19.5
C8F20(CH2)3C6H549.5:50.5
C8F20C6H577.5:22.5

Scientific Community

The International Symposium on Fluorous Technologies (ISoFT) is a biennial meeting that brings together scientists working in the area of fluorous chemistry.

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number of compounds in a single process. These compound libraries can be made as mixtures, sets of individual compounds or chemical structures generated by computer software. Combinatorial chemistry can be used for the synthesis of small molecules and for peptides.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a solvent in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound.

<span class="mw-page-title-main">Paper chromatography</span> Separation of coloured chemicals on paper

Paper chromatography is an analytical method used to separate coloured chemicals or substances. It is now primarily used as a teaching tool, having been replaced in the laboratory by other chromatography methods such as thin-layer chromatography (TLC).

<span class="mw-page-title-main">Counterion</span> Ion which negates another oppositely-charged ion in an ionic molecule

In chemistry, a counterion is the ion that accompanies an ionic species in order to maintain electric neutrality. In table salt the sodium ion is the counterion for the chloride ion and vice versa.

Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. LLE is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

Aqueous biphasic systems (ABS) or aqueous two-phase systems (ATPS) are clean alternatives for traditional organic-water solvent extraction systems.

Countercurrent distribution is an analytical chemistry technique which was developed by Lyman C. Craig in the 1940s. Countercurrent distribution is a separation process that is founded on the principles of liquid–liquid extraction where a chemical compound is distributed (partitioned) between two immiscible liquid phases according to its relative solubility in the two phases. The simplest form of liquid-liquid extraction is the partitioning of a mixture of compounds between two immiscible liquid phases in a separatory funnel. This occurs in five steps: 1) preparation of the separatory funnel with the two phase solvent system, 2) introduction of the compound mixture into the separatory funnel, 3) vigorous shaking of the separatory funnel to mix the two layers and allow for mass transfer of compounds in and out of the phases, 4) The contents of the separatory funnel are allowed to settle back into two distinct phases and 5) the two phases are separated from each other by draining out the bottom phase. If a compound is insoluble in the lower phase it will distribute into the upper phase and stay in the separatory funnel. If a compound is insoluble in the upper phase it will distribute into the lower phase and be removed from the separatory funnel. If the mixture contains one or more compounds that are soluble in the upper phase and one or more compounds that are soluble in the lower phase, then an extraction has occurred. Often, an individual compound is soluble to a certain extent in both phases and the extraction is, therefore, incomplete. The relative solubility of a compound in two phases is known as the partition coefficient.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

Reversed-phase chromatography includes any chromatographic method that uses a hydrophobic stationary phase. RPC refers to liquid chromatography.

A molecularly imprinted polymer (MIP) is a polymer that has been processed using the molecular imprinting technique which leaves cavities in the polymer matrix with an affinity for a chosen "template" molecule. The process usually involves initiating the polymerization of monomers in the presence of a template molecule that is extracted afterwards, leaving behind complementary cavities. These polymers have affinity for the original molecule and have been used in applications such as chemical separations, catalysis, or molecular sensors. Published works on the topic date to the 1930s.

Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. It is typically performed during the work-up step following a chemical synthesis to purify crude compounds and results in the product being largely free of acidic or basic impurities. A separatory funnel is commonly used to perform an acid-base extraction.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

<span class="mw-page-title-main">Extraction (chemistry)</span> Separation of a desired substance from other substances in the sample

Extraction in chemistry is a separation process consisting of the separation of a substance from a matrix. The distribution of a solute between two phases is an equilibrium condition described by partition theory. This is based on exactly how the analyte moves from the initial solvent into the extracting solvent. The term washing may also be used to refer to an extraction in which impurities are extracted from the solvent containing the desired compound.

<span class="mw-page-title-main">Actinide chemistry</span> Branch of nuclear chemistry

Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.

<span class="mw-page-title-main">Dennis P. Curran</span>

Dennis P. Curran is an American organic chemist and a professor of chemistry at University of Pittsburgh known for his research in the fields of organic chemistry, radical chemistry, and fluorous chemistry.

<span class="mw-page-title-main">Cosolvent</span>

In chemistry, cosolvents are substances added to a primary solvent in small amounts to increase the solubility of a poorly-soluble compound. Their use is most prevalent in chemical and biological research relating to pharmaceuticals and food science, where alcohols are frequently used as cosolvents in water to dissolve hydrophobic molecules during extraction, screening, and formulation. Cosolvents find applications also in environmental chemistry and are known as effective countermeasures against pollutant non-aqueous phase liquids, as well as in the production of functional energy materials and synthesis of biodiesel.

References

  1. 1 2 3 István T. Horváth (Ed.) Topics in Current Chemistry 2011 "Fluorous Chemistry" doi : 10.1007/128_2011_282
  2. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (December 2006). "Sources, fate and transport of perfluorocarboxylates". Environ. Sci. Technol. 40 (1): 32–44. Bibcode:2006EnST...40...32P. doi:10.1021/es0512475. PMID   16433330.
  3. E.G. Hope, A.P. Abbott, D.L. Davies, G.A. Solan and A.M. Stuart "Green Organometallic Chemistry" in Comprehensive Organometallic Chemistry III, 2007, Volume 12, Pages 837-864. doi : 10.1016/B0-08-045047-4/00182-5

Representative journal articles