Force spectrum microscopy

Last updated

Force Spectrum Microscopy (FSM) is an application of active microrheology developed to measure aggregate random forces in the cytoplasm. [1] Large, inert flow tracers are injected into live cells and become lodged inside the cytoskeletal mesh, wherein it is oscillated by repercussions from active motor proteins. The magnitude of these random forces can be inferred from the frequency of oscillation of tracer particles. Tracking the fluctuations of tracer particles using optical microscopy can isolate the contribution of active random forces to intracellular molecular transport from that of Brownian motion.

Contents

Basic principles

FSM was developed by Ming Guo and David A. Weitz to probe stochastic intracellular forces generated by motor proteins. [1] Far from a liquid void, the cytoplasm contains a complex meshwork of actin and myosin conferring structural support to the cell, as well as harbouring vesicles and mitochondria among other organelles. [2] Recent research on the macromolecular crowding inside the cytoplasm raises concerns whether diffusive-like motion of large molecules have been mistakenly attributed to Brownian forces. [3] Instead, there are suspicions that myosin motor proteins, which tug randomly on the actin filaments embedded with large molecules, give rise to diffusive-like motion of molecules inside cells. [3] [4] Guo et al. developed an assay to distinguish whether particle motion inside cells are driven by thermal diffusion or by repercussions from active motor proteins like non-muscle myosin II shaking the cellular cytoskeleton.

FSM relies on injecting tracer particles coated with polyethylene glycol (PEG) larger than the cytoskeletal mesh size (>50 nm), [5] settling in between an internetwork of actin filaments and myosin motor proteins. As myosin motor proteins tug on actin filaments to perform cellular work, these actin fluctuations invariably oscillate neighboring PEGylated particles. The magnitude of tracer fluctuation is proportional to the magnitude of aggregate active motor forces. Thus, by recording the displacement of tracer oscillations, FSM can gauge and derive the magnitude of forces exerted by active motor proteins. [1]

Force measurement

The fluctuations of PEGylated tracers coupled to aggregate myosin motor forces can be likened to a Hookean spring,

where the force applied to generate the oscillation displacement is proportional to the effective spring constant of the intracellular environment. The displacement during oscillation is a spatial function of time, which can be directly measured using optical microscopy. [1] A Fourier transform then maps information in the temporal domain to the frequency domain to derive a useful dimension as a function of frequency,

where , and are quadratic forms of averaged force, elasticity and displacement used to account for stochastic forces. [1] Time-averaged Mean squared displacement, can be retrieved by a Fourier Transform from the frequency domain back to the temporal domain. In the context of oscillation frequency, the higher the force frequency spectrum, the greater the metabolic activity of the cell. [6] Independent micromechanical measurements can calculate the elasticity of the cytoplasm. By using an optical tweezer to apply a prescribed force to a tracer particle, FSM can measure the resulting displacement in order to estimate the elastic spring constant. [7] [8]

Applications

Cytoplasmic fluidity

Directed oscillation of tracer particles using optical tweezers resulted in displacement that was nearly synchronized with applied force, suggesting that the cytoplasm is materially closer to an elastic solid. [1] This is in stark contrast to previous hypothesis that the cytoplasm is a viscoelastic fluid in which large molecules can freely diffuse. [9] In ATP-depleted cells, in which non-muscle myosin II are inactivated, FSM experiments reveal that tracer particles cease to oscillate as if the cytoplasm had solidified. [1] Myosin IIs are motor proteins that bind and tugs on actin filaments through ATP hydrolysis. [10] This further corroborates the finding that in nutrient-starved bacteria, the cytoplasm transitions into a glasslike substance. [11] Thus, ATP-hydrolysis by motor proteins appear to be critical to sustain cytoplasmic fluidity, which is crucial to vesicle transport and diffusive motion in the cytoskeleton. [1]

Differential diagnosis of malignant cancer

By measuring the general state of activity inside a cell, FSM can be applied to identify malignant cancerous cells, which are characteristically more elastic [12] and more motile. FSM measurements on malignant MCF-7 breast cancer cells and benign MCF-10A breast cancer cells revealed a statistically significant separation in force spectrum that allows FSM to assay for metastatic cancer. [1] Dimensionality of extracellular environment greatly influences FSM measurements of cancerous cells. In a 3D matrix, MDA-MB-231 metastatic breast cancer cells had comparatively more solid cytoplasm than counterparts cultured on 2D plates. [13]

Related Research Articles

<span class="mw-page-title-main">Pseudopodia</span> False leg found on slime molds, archaea, protozoans, leukocytes and certain bacteria

A pseudopod or pseudopodium is a temporary arm-like projection of a eukaryotic cell membrane that is emerged in the direction of movement. Filled with cytoplasm, pseudopodia primarily consist of actin filaments and may also contain microtubules and intermediate filaments. Pseudopods are used for motility and ingestion. They are often found in amoebas.

<span class="mw-page-title-main">Cytoskeleton</span> Network of filamentous proteins that forms the internal framework of cells

The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is composed of similar proteins in the various organisms. It is composed of three main components:microfilaments, intermediate filaments, and microtubules, and these are all capable of rapid growth or disassembly depending on the cell's requirements.

Force spectroscopy is a set of techniques for the study of the interactions and the binding forces between individual molecules. These methods can be used to measure the mechanical properties of single polymer molecules or proteins, or individual chemical bonds. The name "force spectroscopy", although widely used in the scientific community, is somewhat misleading, because there is no true matter-radiation interaction.

<span class="mw-page-title-main">Cytokinesis</span> Part of the cell division process

Cytokinesis is the part of the cell division process during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis. During cytokinesis the spindle apparatus partitions and transports duplicated chromatids into the cytoplasm of the separating daughter cells. It thereby ensures that chromosome number and complement are maintained from one generation to the next and that, except in special cases, the daughter cells will be functional copies of the parent cell. After the completion of the telophase and cytokinesis, each daughter cell enters the interphase of the cell cycle.

<span class="mw-page-title-main">Microfilament</span> Filament in the cytoplasm of eukaryotic cells

Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin, but are modified by and interact with numerous other proteins in the cell. Microfilaments are usually about 7 nm in diameter and made up of two strands of actin. Microfilament functions include cytokinesis, amoeboid movement, cell motility, changes in cell shape, endocytosis and exocytosis, cell contractility, and mechanical stability. Microfilaments are flexible and relatively strong, resisting buckling by multi-piconewton compressive forces and filament fracture by nanonewton tensile forces. In inducing cell motility, one end of the actin filament elongates while the other end contracts, presumably by myosin II molecular motors. Additionally, they function as part of actomyosin-driven contractile molecular motors, wherein the thin filaments serve as tensile platforms for myosin's ATP-dependent pulling action in muscle contraction and pseudopod advancement. Microfilaments have a tough, flexible framework which helps the cell in movement.

<span class="mw-page-title-main">Actin</span> Family of proteins

Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.

<span class="mw-page-title-main">Myosin</span> Superfamily of motor proteins

Myosins are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility.

<span class="mw-page-title-main">Cytoplasmic streaming</span> Flow of the cytoplasm inside the cell

Cytoplasmic streaming, also called protoplasmic streaming and cyclosis, is the flow of the cytoplasm inside the cell, driven by forces from the cytoskeleton. It is likely that its function is, at least in part, to speed up the transport of molecules and organelles around the cell. It is usually observed in large plant and animal cells, greater than approximately 0.1 mm. In smaller cells, the diffusion of molecules is more rapid, but diffusion slows as the size of the cell increases, so larger cells may need cytoplasmic streaming for efficient function.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

<span class="mw-page-title-main">Motor protein</span> Class of molecular proteins

Motor proteins are a class of molecular motors that can move along the cytoplasm of cells. They convert chemical energy into mechanical work by the hydrolysis of ATP. Flagellar rotation, however, is powered by a proton pump.

<span class="mw-page-title-main">Myofilament</span> The two protein filaments of myofibrils in muscle cells

Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the contractile proteins and titin is an elastic protein. The myofilaments act together in muscle contraction, and in order of size are a thick one of mostly myosin, a thin one of mostly actin, and a very thin one of mostly titin.

<span class="mw-page-title-main">Cell cortex</span> Layer on the inner face of a cell membrane

The cell cortex, also known as the actin cortex, cortical cytoskeleton or actomyosin cortex, is a specialized layer of cytoplasmic proteins on the inner face of the cell membrane. It functions as a modulator of membrane behavior and cell surface properties. In most eukaryotic cells lacking a cell wall, the cortex is an actin-rich network consisting of F-actin filaments, myosin motors, and actin-binding proteins. The actomyosin cortex is attached to the cell membrane via membrane-anchoring proteins called ERM proteins that plays a central role in cell shape control. The protein constituents of the cortex undergo rapid turnover, making the cortex both mechanically rigid and highly plastic, two properties essential to its function. In most cases, the cortex is in the range of 100 to 1000 nanometers thick.

<span class="mw-page-title-main">Anomalous diffusion</span> Diffusion process with a non-linear relationship to time

Anomalous diffusion is a diffusion process with a non-linear relationship between the mean squared displacement (MSD), , and time. This behavior is in stark contrast to Brownian motion, the typical diffusion process described by Einstein and Smoluchowski, where the MSD is linear in time.

<span class="mw-page-title-main">Bleb (cell biology)</span> Bulge in the plasma membrane of a cell

In cell biology, a bleb is a bulge of the plasma membrane of a cell, characterized by a spherical, "blister-like", bulky morphology. It is characterized by the decoupling of the cytoskeleton from the plasma membrane, degrading the internal structure of the cell, allowing the flexibility required for the cell to separate into individual bulges or pockets of the intercellular matrix. Most commonly, blebs are seen in apoptosis but are also seen in other non-apoptotic functions. Blebbing, or zeiosis, is the formation of blebs.

Magnetic tweezers (MT) are scientific instruments for the manipulation and characterization of biomolecules or polymers. These apparatus exert forces and torques to individual molecules or groups of molecules. It can be used to measure the tensile strength or the force generated by molecules.

<span class="mw-page-title-main">MYO10</span> Protein-coding gene in the species Homo sapiens

Myosin X, also known as MYO10, is a protein that in humans is encoded by the MYO10 gene.

<span class="mw-page-title-main">Unconventional myosin-Ia</span> Protein-coding gene in the species Homo sapiens

Unconventional myosin-Ia is a protein that in humans is encoded by the MYO1A gene.

<span class="mw-page-title-main">Single-particle tracking</span> AliAlamerr

Single-particle tracking (SPT) is the observation of the motion of individual particles within a medium. The coordinates time series, which can be either in two dimensions (x, y) or in three dimensions (x, y, z), is referred to as a trajectory. The trajectory is typically analyzed using statistical methods to extract information about the underlying dynamics of the particle. These dynamics can reveal information about the type of transport being observed (e.g., thermal or active), the medium where the particle is moving, and interactions with other particles. In the case of random motion, trajectory analysis can be used to measure the diffusion coefficient.

Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer. It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods.

The cochlear amplifier is a positive feedback mechanism within the cochlea that provides acute sensitivity in the mammalian auditory system. The main component of the cochlear amplifier is the outer hair cell (OHC) which increases the amplitude and frequency selectivity of sound vibrations using electromechanical feedback.

References

  1. 1 2 3 4 5 6 7 8 9 Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A. (August 14, 2014). "Probing the Stochastic, Motor-Drive Properties of the Cytoplasm Using Force Spectrum Microscopy". Cell. 158 (4): 822–832. doi:10.1016/j.cell.2014.06.051. PMC   4183065 . PMID   25126787.
  2. Brangwynne, C.P.; Koenderink, G.H.; Mackintosh, F.C.; Weitz, D.A. (2007). "Cytoplasmic diffusion: molecular motors mix it up" (PDF). Journal of Cell Biology. 183 (4): 583–587. doi: 10.1083/jcb.200806149 . PMC   2582900 . PMID   19001127.
  3. 1 2 MacKintosh, F.C. (2012). "Active Diffusion: the Erratic Dance of Chromosomal Loci". Proceedings of the National Academy of Sciences, USA. 109 (19): 7138–7139. Bibcode:2012PNAS..109.7138M. doi: 10.1073/pnas.1204794109 . PMC   3358833 . PMID   22562796.
  4. MacKintosh, F.C.; Levine, A.J. (2010). "Nonequilibrium Mechanics and Dynamics of Motor-activated Gels". Physical Review Letters. 100 (1): 018104. arXiv: 0704.3794 . Bibcode:2008PhRvL.100a8104M. doi:10.1103/physrevlett.100.018104. PMID   18232824. S2CID   16312431.
  5. Luby-Phelps, K. (2000). "Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area". International Review of Cytology. 192: 189–221. doi:10.1016/S0074-7696(08)60527-6. ISBN   9780123645968. PMID   10553280.
  6. Mourão, MA; Hakim, JB; Schnell, S (2014). "Connecting the dots: the effects of macromolecular crowding on cell physiology". Biophysical Journal. 107 (12): 2761–2766. Bibcode:2014BpJ...107.2761M. doi:10.1016/j.bpj.2014.10.051. PMC   4269789 . PMID   25517143.
  7. Tassieri, M; Evans, RML; Warren, R; Bailey, NJ; Cooper, JM (2012). "Microrheology with optical tweezers: data analysis" (PDF). New Journal of Physics. 14 (11): 115032. Bibcode:2012NJPh...14k5032T. doi: 10.1088/1367-2630/14/11/115032 .
  8. Bausch, AR; MöllerMöller, W; Sackmann, E (1999). "Measurement of local viscoelasticity and forces in living cells by magnetic tweezers". Biophysical Journal. 76 (1 Pt 1): 573–579. Bibcode:1999BpJ....76..573B. doi:10.1016/s0006-3495(99)77225-5. PMC   1302547 . PMID   9876170.
  9. Guigas, G; Kalla, C; Weiss, M (2007). "The degree of macromolecular crowding in the cytoplasm and nucleoplasm of mammalian cells is conserved". FEBS Letters. 581 (26): 5094–5098. doi:10.1016/j.febslet.2007.09.054. PMID   17923125. S2CID   29844974.
  10. Vicente-Manzanares, M; Ma, X; Adelstein, RS; Horwitz, AR (2009). "Non-muscle myosin II takes centre stage in cell adhesion and migration". Nature Reviews Molecular Cell Biology. 10 (11): 778–790. doi:10.1038/nrm2786. PMC   2834236 . PMID   19851336.
  11. Parry, BR; Surovtsev, IV; cabeen, MT; Corey, SO; Dufresne, ER; Jacobs-Wagner, C (2013). "The Bacterial Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity". Cell. 156 (1–2): 183–194. doi:10.1016/j.cell.2013.11.028. PMC   3956598 . PMID   24361104.
  12. Plodinec, M; et al. (2013). "The Nanomechanical Signature of Breast Cancer". Biophysical Journal. 104 (2): 321. Bibcode:2013BpJ...104..321P. doi: 10.1016/j.bpj.2012.11.1779 .
  13. Mak, M; Kamm, RD; Zaman, MH (2014). "Impact of Dimensionality and Network Disruption on Microrheology of Cancer Cells in 3D Environments". PLOS Computational Biology. 10 (11): e1003959. Bibcode:2014PLSCB..10E3959M. doi: 10.1371/journal.pcbi.1003959 . PMC   4238946 . PMID   25412385.