Fourier amplitude sensitivity testing

Last updated

Fourier amplitude sensitivity testing (FAST) is a variance-based global sensitivity analysis method. The sensitivity value is defined based on conditional variances which indicate the individual or joint effects of the uncertain inputs on the output.

Contents

FAST first represents conditional variances via coefficients from the multiple Fourier series expansion of the output function. Then the ergodic theorem is applied to transform the multi-dimensional integral to a one-dimensional integral in evaluation of the Fourier coefficients. A set of incommensurate frequencies is required to perform the transform and most frequencies are irrational. To facilitate computation a set of integer frequencies is selected instead of the irrational frequencies. The integer frequencies are not strictly incommensurate, resulting in an error between the multi-dimensional integral and the transformed one-dimensional integral. However, the integer frequencies can be selected to be incommensurate to any order so that the error can be controlled meeting any precision requirement in theory. Using integer frequencies in the integral transform, the resulted function in the one-dimensional integral is periodic and the integral only needs to evaluate in a single period. Next, since the continuous integral function can be recovered from a set of finite sampling points if the Nyquist–Shannon sampling theorem is satisfied, the one-dimensional integral is evaluated from the summation of function values at the generated sampling points.

FAST is more efficient to calculate sensitivities than other variance-based global sensitivity analysis methods via Monte Carlo integration. However the calculation by FAST is usually limited to sensitivities referred to as “main effects” or “first-order effects” due to the computational complexity in computing higher-order effects.

History

The FAST method originated in study of coupled chemical reaction systems in 1973 [1] [2] and the detailed analysis of the computational error was presented latter in 1975. [3] Only the first order sensitivity indices referring to “main effect” were calculated in the original method. A FORTRAN computer program capable of analyzing either algebraic or differential equation systems was published in 1982. [4] In 1990s, the relationship between FAST sensitivity indices and Sobol’s ones calculated from Monte-Carlo simulation was revealed in the general framework of ANOVA-like decomposition [5] and an extended FAST method able to calculate sensitivity indices referring to “total effect” was developed. [6]

Foundation

Variance-based sensitivity

Sensitivity indices of a variance-based method are calculated via ANOVA-like decomposition of the function for analysis. Suppose the function is where . The ANOVA-like decomposition is

provided that is a constant and the integral of each term in the sums is zero, i.e.

The conditional variance which characterizes the contribution of each term to the total variance of is

The total variance is the sum of all conditional variances

The sensitivity index is defined as the normalized conditional variance as

especially the first order sensitivity

which indicates the main effect of the input .

Multiple Fourier series

One way to calculate the ANOVA-like decomposition is based on multiple Fourier series. The function in the unit hyper-cube can be extended to a multiply periodic function and the multiple Fourier series expansion is

where the Fourier coefficient is

The ANOVA-like decomposition is

The first order conditional variance is

where and are the real and imaginary part of respectively

Ergodic theorem

A multi-dimensional integral must be evaluated in order to calculate the Fourier coefficients. One way to evaluate this multi-dimensional integral is to transform it into a one-dimensional integral by expressing every input as a function of a new independent variable , as follows

where is a set of incommensurate frequencies, i.e.

for an integer set of if and only if for every . Then the Fourier coefficients can be calculated by a one-dimensional integral according to the ergodic theorem [7]

Implementation

Integer frequencies

At most one of the incommensurate frequencies can be rational with all others being irrational. Since the numerical value of an irrational number cannot be stored exactly in a computer, an approximation of the incommensurate frequencies by all rational numbers is required in implementation. Without loss of any generality the frequencies can be set as integers instead of any rational numbers. A set of integers is approximately incommensurate to the order of if

for

where is an integer. The exact incommensurate condition is an extreme case when .

Using the integer frequencies the function in the transformed one-dimensional integral is periodic so only the integration over a period of is required. The Fourier coefficients can be approximately calculated as

The approximation of the incommensurate frequencies for a finite results in a discrepancy error between the true Fourier coefficients , and their estimates , . The larger the order is the smaller the error is but the more computational efforts are required to calculate the estimates in the following procedure. In practice is frequently set to 4 and a table of resulted frequency sets which have up to 50 frequencies is available. (McRae et al., 1982)

Search curve

The transform, , defines a search curve in the input space. If the frequencies, , are incommensurate, the search curve can pass through every point in the input space as varies from 0 to so the multi-dimensional integral over the input space can be accurately transformed to a one-dimensional integral along the search curve. However, if the frequencies are approximately incommensurate integers, the search curve cannot pass through every point in the input space. If fact the search is repeated since the transform function is periodic, with a period of . The one-dimensional integral can be evaluated over a single period instead of the infinite interval for incommensurate frequencies; However, a computational error arises due to the approximation of the incommensuracy.

Sampling

The approximated Fourier can be further expressed as

and

The non-zero integrals can be calculated from sampling points

where the uniform sampling point in is

The total number of sampling points is which should satisfy the Nyquist sampling criterion, i.e.

where is the largest frequency in and is the maximum order of the calculated Fourier coefficients.

Partial sum

After calculating the estimated Fourier coefficients, the first order conditional variance can be approximated by

where only the partial sum of the first two terms is calculated and for determining the number of sampling points. Using the partial sum can usually return an adequately good approximation of the total sum since the terms corresponding to the fundamental frequency and low order frequencies usually contribute most to the total sum. Additionally, the Fourier coefficient in the summation are just an estimate of the true value and adding more higher order terms will not help improve the computational accuracy significantly. Since the integer frequencies are not exactly incommensurate there are two integers and such that Interference between the two frequencies can occur if higher order terms are included in the summation.

Similarly the total variance of can be calculated as

where denotes the estimated Fourier coefficient of the function of inside the bracket and is the squared Fourier coefficient of the function . Finally the sensitivity referring to the main effect of an input can be calculated by dividing the conditional variance by the total variance.

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

A Fourier transform (FT) is a mathematical transform that decomposes functions depending on space or time into functions depending on spatial frequency or temporal frequency. That process is also called analysis. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time.

<span class="mw-page-title-main">Phonon</span> Quasiparticle of mechanical vibrations

In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechanical quantization of the modes of vibrations for elastic structures of interacting particles. Phonons can be thought of as quantized sound waves, similar to photons as quantized light waves.

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The Short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in Software Defined Radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use Fast Fourier Transforms (FFTs) with 2^24 points on desktop computers.

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.

In mathematics and in signal processing, the Hilbert transform is a specific linear operator that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). This linear operator is given by convolution with the function . The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° to every frequency component of a function, the sign of the shift depending on the sign of the frequency. The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In mathematics, Parseval's theorem usually refers to the result that the Fourier transform is unitary; loosely, that the sum of the square of a function is equal to the sum of the square of its transform. It originates from a 1799 theorem about series by Marc-Antoine Parseval, which was later applied to the Fourier series. It is also known as Rayleigh's energy theorem, or Rayleigh's identity, after John William Strutt, Lord Rayleigh.

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to a sequence of values.

In digital signal processing, downsampling, compression, and decimation are terms associated with the process of resampling in a multi-rate digital signal processing system. Both downsampling and decimation can be synonymous with compression, or they can describe an entire process of bandwidth reduction (filtering) and sample-rate reduction. When the process is performed on a sequence of samples of a signal or a continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a lower rate.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

<span class="mw-page-title-main">Gabor transform</span>

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

A Modified Wigner distribution function is a variation of the Wigner distribution function (WD) with reduced or removed cross-terms.

In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform. The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary operator, and algorithms for the hidden subgroup problem. The quantum Fourier transform was discovered by Don Coppersmith.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

In mathematical analysis and applications, multidimensional transforms are used to analyze the frequency content of signals in a domain of two or more dimensions.

Beamforming is a signal processing technique used to spatially select propagating waves. In order to implement beamforming on digital hardware the received signals need to be discretized. This introduces quantization error, perturbing the array pattern. For this reason, the sample rate must be generally much greater than the Nyquist rate.

<span class="mw-page-title-main">Dixon elliptic functions</span>

In mathematics, the Dixon elliptic functions sm and cm are two elliptic functions that map from each regular hexagon in a hexagonal tiling to the whole complex plane. Because these functions satisfy the identity , as real functions they parametrize the cubic Fermat curve , just as the trigonometric functions sine and cosine parametrize the unit circle .

References

  1. Cukier, R.I., C.M. Fortuin, K.E. Shuler, A.G. Petschek and J.H. Schaibly (1973). Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. Journal of Chemical Physics, 59, 3873–3878.
  2. Schaibly, J.H. and K.E. Shuler (1973). Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. II Applications. Journal of Chemical Physics, 59, 3879–3888.
  3. Cukier, R.I., J.H. Schaibly, and K.E. Shuler (1975). Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations. Journal of Chemical Physics, 63, 1140–1149.
  4. McRae, G.J., J.W. Tilden and J.H. Seinfeld (1982). Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST). Computers & Chemical Engineering, 6, 15–25.
  5. Archer G.E.B., A. Saltelli and I.M. Sobol (1997). Sensitivity measures, ANOVA-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 58, 99–120.
  6. Saltelli A., S. Tarantola and K.P.S. Chan (1999). A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41, 39–56.
  7. Weyl, H. (1938). Mean motion. American Journal of Mathematics, 60, 889–896.