Fox n-coloring

Last updated

In the mathematical field of knot theory, Fox n-coloring is a method of specifying a representation of a knot group or a group of a link (not to be confused with a link group) onto the dihedral group of order n where n is an odd integer by coloring arcs in a link diagram (the representation itself is also often called a Fox n-coloring). Ralph Fox discovered this method (and the special case of tricolorability) "in an effort to make the subject accessible to everyone" when he was explaining knot theory to undergraduate students at Haverford College in 1956. Fox n-coloring is an example of a conjugation quandle.

Contents

Definition

Let L be a link, and let be the fundamental group of its complement. A representation of onto the dihedral group of order 2n is called a Fox n-coloring (or simply an n-coloring) of L. A link L which admits such a representation is said to be n-colorable, and is called an n-coloring of L. Such representations of groups of links had been considered in the context of covering spaces since Reidemeister in 1929. [Actually, Reidemeister fully explained all this in 1926, on page 18 of "Knoten und Gruppen" in Hamburger Abhandlungen 5. The name "Fox coloring" was given to it much later by mathematicians who probably couldn't read German.] Fox's preferred term for so-called "Fox 3-coloring" was "property L"; see Exercise 6 on page 92 of his book "Introduction to Knot Theory" (1963).

The group of a link is generated by paths from a basepoint in to the boundary of a tubular neighbourhood of the link, around a meridian of the tubular neighbourhood, and back to the basepoint. By surjectivity of the representation these generators must map to reflections of a regular n-gon. Such reflections correspond to elements Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): ts^{i} of the dihedral group, where t is a reflection and s is a generating () rotation of the n-gon. The generators of the group of a link given above are in bijective correspondence with arcs of a link diagram, and if a generator maps to we color the corresponding arc Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): i\in {\mathbb {Z}}/p{\mathbb {Z}}. This is called a Fox n-coloring of the link diagram, and it satisfies the following properties:

A n-colored link yields a 3-manifold M by taking the (irregular) dihedral covering of the 3-sphere branched over L with monodromy given by . By a theorem of Montesinos and Hilden, any closed oriented 3-manifold may be obtained this way for some knot K and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): \rho some tricoloring of K. This is no longer true when n is greater than three.

Number of colorings

The number of distinct Fox n-colorings of a link L, denoted

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\mathrm {col}}_{n}(L),

is an invariant of the link, which is easy to calculate by hand on any link diagram by coloring arcs according to the coloring rules. When counting colorings, by convention we also consider the case where all arcs are given the same color, and call such a coloring trivial.

All possible tricolorings of the trefoil knot. Trefoil tricolorings.svg
All possible tricolorings of the trefoil knot.

For example, the standard minimal crossing diagram of the Trefoil knot has 9 distinct tricolorings as seen in the figure:

The set of Fox 'n'-colorings of a link forms an abelian group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): C_{n}(K)\,, where the sum of two n-colorings is the n-coloring obtained by strandwise addition. This group splits as a direct sum

,

where the first summand corresponds to the n trivial (constant) colors, and nonzero elements of summand correspond to nontrivial n-colorings (modulo translations obtained by adding a constant to each strand).

If is the connected sum operator and and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): L_{2} are links, then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\mathrm {col}}_{n}(L_{1}){\mathrm {col}}_{n}(L_{2})=n{\mathrm {col}}_{n}(L_{1}\#L_{2}).

Generalization to G-coloring

Let L be a link, and let π be the fundamental group of its complement, and let G be a group. A homomorphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): \rho of π to G is called a G-coloring of L. A G-coloring of a knot diagram is an induced assigning an element of G to the strands of L such that, at each crossing, if c is the element of G assigned to the overcrossing strand and if a and b are the elements of G assigned to the two undercrossing strands, then a = c−1 b c or b = c−1 a c, depending on the orientation of the overcrossing strand. If the group G is dihedral of order 2n, this diagrammatic representation of a G-coloring reduces to a Fox n-coloring. The torus knot T(3,5) has only constant n-colorings, but for the group G equal to the alternating group A5, T(3,5) has non-constant G-colorings.

Further reading

Related Research Articles

Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such models in the 19th century.

In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function. In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines. The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function.

In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category of abelian groups, Ab. The theory originated in an effort to unify several cohomology theories by Alexander Grothendieck and independently in the slightly earlier work of David Buchsbaum. Abelian categories are very stable categories; for example they are regular and they satisfy the snake lemma. The class of abelian categories is closed under several categorical constructions, for example, the category of chain complexes of an abelian category, or the category of functors from a small category to an abelian category are abelian as well. These stability properties make them inevitable in homological algebra and beyond; the theory has major applications in algebraic geometry, cohomology and pure category theory.

In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

<span class="mw-page-title-main">Egyptian fraction</span> Finite sum of distinct unit fractions

An Egyptian fraction is a finite sum of distinct unit fractions, such as

In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers.

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some Failed to parse : M>0 such that for all

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

Sedimentation equilibrium in a suspension of different particles, such as molecules, exists when the rate of transport of each material in any one direction due to sedimentation equals the rate of transport in the opposite direction due to diffusion. Sedimentation is due to an external force, such as gravity or centrifugal force in a centrifuge.

A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular to the radiation's propagation direction. Transverse modes occur in radio waves and microwaves confined to a waveguide, and also in light waves in an optical fiber and in a laser's optical resonator.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

Cash flow matching is a process of hedging in which a company or other entity matches its cash outflows with its cash inflows over a given time horizon. It is a subset of immunization strategies in finance. Cash flow matching is of particular importance to defined benefit pension plans.

<span class="mw-page-title-main">Conway's Soldiers</span> Mathematical puzzle by John Conway

Conway's Soldiers or the checker-jumping problem is a one-person mathematical game or puzzle devised and analyzed by mathematician John Horton Conway in 1961. A variant of peg solitaire, it takes place on an infinite checkerboard. The board is divided by a horizontal line that extends indefinitely. Above the line are empty cells and below the line are an arbitrary number of game pieces, or "soldiers". As in peg solitaire, a move consists of one soldier jumping over an adjacent soldier into an empty cell, vertically or horizontally, and removing the soldier which was jumped over. The goal of the puzzle is to place a soldier as far above the horizontal line as possible.

In combinatorial mathematics, a q-exponential is a q-analog of the exponential function, namely the eigenfunction of a q-derivative. There are many q-derivatives, for example, the classical q-derivative, the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, q-exponentials are not unique. For example, is the q-exponential corresponding to the classical q-derivative while are eigenfunctions of the Askey-Wilson operators.

The sensitivity index or discriminability index or detectability index is a dimensionless statistic used in signal detection theory. A higher index indicates that the signal can be more readily detected.

In algebraic geometry, the Iitaka dimension of a line bundle L on an algebraic variety X is the dimension of the image of the rational map to projective space determined by L. This is 1 less than the dimension of the section ring of L

In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields.

In the field of mathematical analysis, a general Dirichlet series is an infinite series that takes the form of

Abelian varieties are a natural generalization of elliptic curves, including algebraic tori in higher dimensions. Just as elliptic curves have a natural moduli space Failed to parse : {\displaystyle \mathcal{M}_{1,1}} over characteristic 0 constructed as a quotient of the upper-half plane by the action of , there is an analogous construction for abelian varieties using the Siegel upper half-space and the symplectic group .

Lunar arithmetic, formerly called dismal arithmetic, is a version of arithmetic in which the addition and multiplication operations on digits are defined as the max and min operations. Thus, in lunar arithmetic,