Framestone

Last updated

A framestone is a special type of carbonate rock in the Dunham classification.

Contents

Description

A thin section of a Framestone (width of picture is 36 mm). The rigid framework is built by sponges and crinoids. DunhamFramestone.jpg
A thin section of a Framestone (width of picture is 36 mm). The rigid framework is built by sponges and crinoids.

The term "framestone" was not used in the original Dunham classification by Dunham (1962). [1]

It first appeared in the modified Dunham classification by Embry and Klovan (1971) [2] where it is described as an autochthonous limestone having "in situ massive fossils which constructed a rigid three-dimensional framework during deposition. The in situ fossils therefore form the supporting framework of the rock, with matrix material occurring in the interstices between the fossils." [3]

Lokier and Al Junaibi(2016) [4] define a framestone as "an autochthonous carbonate-dominated rock supported by a rigid organic framework developed at the time of deposition." [5]

Interpretive problems

One possible problem in the interpretation of framestones is that the framework can be of different sizes from millimeters to meters, so they might not be present on the thin section. Some organisms can also be binding and build frames, [6] so they might produce bindstones/boundstones and framestones. In some cases it might also be hard to decide whether a fossil was rigid or not during deposition.

Related Research Articles

<span class="mw-page-title-main">Limestone</span> Sedimentary rocks made of calcium carbonate

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Shale</span> Fine-grained, clastic sedimentary rock

Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2Si2O5(OH)4) and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite. Shale is characterized by its tendency to split into thin layers (laminae) less than one centimeter in thickness. This property is called fissility. Shale is the most common sedimentary rock.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Tufa</span> Porous limestone rock formed when carbonate minerals precipitate out of ambient temperature water

Tufa is a variety of limestone formed when carbonate minerals precipitate out of water in unheated rivers or lakes. Geothermally heated hot springs sometimes produce similar carbonate deposits, which are known as travertine. Tufa is sometimes referred to as (meteogene) travertine. It should not be confused with hot spring (thermogene) travertine. Tufa, which is calcareous, should also not be confused with tuff, a porous volcanic rock with a similar etymology that is sometimes also called "tufa".

<span class="mw-page-title-main">Siltstone</span> Sedimentary rock which has a grain size in the silt range

Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.

<span class="mw-page-title-main">Mudstone</span> Fine grained sedimentary rock whose original constituents were clays or muds

Mudstone, a type of mudrock, is a fine-grained sedimentary rock whose original constituents were clays or muds. Mudstone is distinguished from shale by its lack of fissility.

<span class="mw-page-title-main">Nummulite</span> Genus of Protozoan

A nummulite is a large lenticular fossil, characterised by its numerous coils, subdivided by septa into chambers. They are the shells of the fossil and present-day marine protozoan Nummulites, a type of foraminiferan. Nummulites commonly vary in diameter from 1.3 cm to 5 cm and are common in Eocene to Miocene marine rocks, particularly around southwest Asia and the Mediterranean in the area that once constituted the Tethys Ocean, such as Eocene limestones from Egypt or from Pakistan. Fossils up to six inches wide are found in the Middle Eocene rocks of Turkey. They are valuable as index fossils.

The Folk classification, in geology, is a technical descriptive classification of sedimentary rocks devised by Robert L. Folk, an influential sedimentary petrologist and Professor Emeritus at the University of Texas.

<span class="mw-page-title-main">Dunham classification</span>

The Dunham classification system for carbonate sedimentary rocks was originally devised by Robert J. Dunham in 1962, and subsequently modified by Embry and Klovan in 1971 to include coarse-grained limestones and sediments that had been organically bound at the time of deposition. The modified Dunham Classification has subsequently become the most widely employed system for the classification of carbonate sedimentary rocks with 89% of workers currently adopting this system over the alternative Folk classification scheme

<span class="mw-page-title-main">Carbonate platform</span> Sedimentary body with topographic relief composed of autochthonous calcareous deposits

A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha or extinct cnidaria were important reef builders.

<span class="mw-page-title-main">Wackestone</span> Mud-supported carbonate rock that contains greater than 10% grains

Under the Dunham classification system of limestones, a wackestone is defined as a mud-supported carbonate rock that contains greater than 10% grains. Most recently, this definition has been clarified as a carbonate-dominated rock in which the carbonate mud component supports a fabric comprising 10% or more very fine-sand grade or larger grains but where less than 10% of the rock is formed of grains larger than sand grade .

<span class="mw-page-title-main">Grainstone</span> Type of limestone

Under the Dunham classification system of limestones, a grainstone is defined as a grain-supported carbonate rock that contains less than 1% mud-grade material. This definition has recently been clarified as a carbonate-dominated rock that does not contain any carbonate mud and where less than 10% of the components are larger than 2 mm. The spaces between grains may be empty (pores) or filled by cement.

<span class="mw-page-title-main">Packstone</span>

Under the Dunham classification system of limestones, a packstone is defined as a grain-supported carbonate rock that contains 1% or more mud-grade fraction. This definition has been clarified by Lokier and Al Junaibi (2016) as a carbonate-dominated lithology containing carbonate mud in a fabric supported by a sand grade grain-size fraction and where less than 10% of the volume consists of grains >2 mm.

<span class="mw-page-title-main">Floatstone</span>

Floatstone is a type of carbonate rock.

Calcilutite is a type of limestone that is composed of predominantly, more than 50 percent, of either clay-size or both silt-size and clay-size detrital (transported) carbonate grains. These grains consist either of fossil fragments, ooids, intraclasts, pellets, other grains, or some combination of them. The term calcilutite was originally proposed in 1903 by Grabau as a part of his calcilutite, calcarenite and calcirudite classification system based upon the size of the detrital grains composing a limestone. In the original classification of limestone according to the dominant grain-size, calcisiltites were not named and are classified as calcilutite. In this classification, which the majority of geologists follow, a calcilutite consists of both silt- and clay-size, less than 0.062 mm in diameter, grains. It is the carbonate equivalent of a mudstone. Calcilutites can accumulate in a wide variety of marine and lacustrine environments.

<span class="mw-page-title-main">Rudstone</span>

Rudstone is a type of carbonate rock.

<span class="mw-page-title-main">Bafflestone</span> Type of carbonate rock

Bafflestone is a type of carbonate rock.

A boundstone is a special type of carbonate rock in the Dunham classification

Bindstone is a special type of carbonate rock in the Dunham classification. The term did not appear in the original Dunham classification from 1962 and was introduced by Embry and Klovan 1971 in the modified Dunham classification.

The term contour currents was first introduced by Heezen et al in 1966 as bottom currents along the continental shelf driven by Coriolis effects and temperature/salinity dependent density gradients. Generally, the currents flow along depth contours, hence called contour currents. Sediments deposited and shaped by the contour currents are called contourites, which are commonly observed in continental rise.

References

  1. Dunham, Robert J. (1962). Ham, W.E. (ed.). "Classification of Carbonate Rocks according to Depositional Texture". Classification of Carbonate Rocks, A Symposium: 108–121.
  2. Embry, Ashton F.; Klovan, J. Edward (1971-12-01). "A late Devonian reef tract on northeastern Banks Island, N.W.T". Bulletin of Canadian Petroleum Geology. 19 (4): 730–781. ISSN   0007-4802.
  3. Embry, Ashton F.; Klovan, J. Edward (1971-12-01). "A late Devonian reef tract on northeastern Banks Island, N.W.T". Bulletin of Canadian Petroleum Geology. 19 (4): 734. ISSN   0007-4802.
  4. Lokier, Stephen W.; Al Junaibi, Mariam (2016). "The petrographic description of carbonate facies: are we all speaking the same language?". Sedimentology. 63 (7): 1843–1885. doi: 10.1111/sed.12293 . ISSN   1365-3091.
  5. Lokier, Stephen W.; Al Junaibi, Mariam (2016). "The petrographic description of carbonate facies: are we all speaking the same language?". Sedimentology. 63 (7): 1880. doi: 10.1111/sed.12293 . ISSN   1365-3091.
  6. Wright, V.P. (1992). "A revised Classification of Limestones". Sedimentary Geology. 76: 177–185. doi:10.1016/0037-0738(92)90082-3.