Frank Werblin

Last updated

Frank Werblin is Professor of the Graduate School, Division of Neurobiology at the University of California, Berkeley. [1]

Contents

Education

Werblin earned his Ph.D. at Johns Hopkins University studying with Professor John Dowling. He was a Guggenheim Fellow, [2] and is noted for discovering the functional and morphological properties of the main retinal neural cell types underlying visual information processing in the retina and for developing the retina slice preparation that is now used universally by retinal researchers.

Career

In 1969, Werblin and Dowling published their seminal studies of the electrophysiological response properties of all the major neuron types in the vertebrate retina. [3] This paper described, for the first time, the connections between all the major types of retina neurons and showed how interactions between these neurons created the visual code that was sent via the optic nerve to the brain. To accomplish this, the authors combined information about the electrical responses of the neurons with anatomical connectivity uncovered by electron microscopic identification of the neural pathways. The micropipette used to record from each cell contained a dye so that each physiologically identified cell could also be morphologically characterized within the layers of the retina. In 1978, Werblin published the first study of an isolated retinal slice preparation. Werblin invented and developed a clever slicing procedure that allowed for a quicker and easier means to access all of the neurons in the various layers of the retina, while leaving the cells largely intact with their supporting matrix and synaptic connections and electrical junctions. [4] This allowed, the researcher for the first time to target specific neurons in the retina for electrical recording. However, because the retinal slice was isolated from the supportive retinal pigment epithelium (PE) that enables the light responses of photoreceptors, light evoked responses were not reported until the retinal slices were constructed with PE still attached. [5] In this manner, whole cell patch recording of amacrine neurons in the salamander retina allowed light evoked excitatory post-synaptic currents (EPSCs) to be measured for the first time, as well as their light elicited spiking potentials, and voltage-gated currents. The new slice technique allowed, for the first time, a neuron to be characterized by its natural stimulus (light), and then to be fully characterized by its morphological, histological, electrophysiological (EPSCs, voltage gated currents, and graded and spike potentials), and chemical identity. [6] The new light-responsive slice methodology also allowed interplexiform cells to be identified and characterized for the first time, [7] as well as sustained and transient amacrine neurons. [8] Precise localization of synaptic inputs to the cell, and localization of functional receptors in the cell was achieved. [9] The slice technique would become a standard for retinal research and be developed for other animals with much smaller neurons, including the Zebrafish [10] and rat. [11] Werblin would then use these data to construct elegant models of visual information processing in the different layers of the retina. [12]

In 1990 Werblin was honored with the Friedenwald Award from the ARVO organization. In 2017, Werblin received the Pepose Award in Vision Science from Brandeis University. [13]

Werblin is also the inventor of Visionize a device/software that uses a smartphone to remap the visual world to help low-vision patients regain visual function. With this gained facility, patients who were functionally blind regain sight and re-enter the world of the sighted, recognizing faces, shopping at supermarkets, going to theater and sports events.. [14]

Werblin is also a Co-Founder, Chief Scientist of IrisVision, a more advanced technology device that connects clinicians with patients remotely through a portable vision laboratory that is located in the patient's home and controlled remotely by the clinician. Clinics can serve patients . [15]

Related Research Articles

Retina Part of the eye

The retina is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception. The retina serves a function which is in many ways analogous to that of the film or image sensor in a camera.

Photoreceptor cell Type of neuroepithelial cell

A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light into signals that can stimulate biological processes. To be more specific, photoreceptor proteins in the cell absorb photons, triggering a change in the cell's membrane potential.

Rod cell Photoreceptor cells that can function in lower light better than cone cells

Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in peripheral vision. On average, there are approximately 92 million rod cells in the human retina. Rod cells are more sensitive than cone cells and are almost entirely responsible for night vision. However, rods have little role in color vision, which is the main reason why colors are much less apparent in dim light.

Retinal ganglion cell Type of cell within the eye

A retinal ganglion cell (RGC) is a type of neuron located near the inner surface of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina amacrine cells. Retina amacrine cells, particularly narrow field cells, are important for creating functional subunits within the ganglion cell layer and making it so that ganglion cells can observe a small dot moving a small distance. Retinal ganglion cells collectively transmit image-forming and non-image forming visual information from the retina in the form of action potential to several regions in the thalamus, hypothalamus, and mesencephalon, or midbrain.

Retina bipolar cell Type of neuron

As a part of the retina, bipolar cells exist between photoreceptors and ganglion cells. They act, directly or indirectly, to transmit signals from the photoreceptors to the ganglion cells.

Motion perception

Motion perception is the process of inferring the speed and direction of elements in a scene based on visual, vestibular and proprioceptive inputs. Although this process appears straightforward to most observers, it has proven to be a difficult problem from a computational perspective, and difficult to explain in terms of neural processing.

Electroretinography

Electroretinography measures the electrical responses of various cell types in the retina, including the photoreceptors, inner retinal cells, and the ganglion cells. Electrodes are placed on the surface of the cornea or on the skin beneath the eye to measure retinal responses. Retinal pigment epithelium (RPE) responses are measured with an EOG test with skin-contact electrodes placed near the canthi. During a recording, the patient's eyes are exposed to standardized stimuli and the resulting signal is displayed showing the time course of the signal's amplitude (voltage). Signals are very small, and typically are measured in microvolts or nanovolts. The ERG is composed of electrical potentials contributed by different cell types within the retina, and the stimulus conditions can elicit stronger response from certain components.

Scotopic vision Visual perception under low-light conditions

In the study of human visual perception, scotopic vision is the vision of the eye under low-light conditions. The term comes from Greek skotos, meaning "darkness", and -opia, meaning "a condition of sight". In the human eye, cone cells are nonfunctional in low visible light. Scotopic vision is produced exclusively through rod cells, which are most sensitive to wavelengths of around 498 nm (blue-green) and are insensitive to wavelengths longer than about 640 nm (red-orange). This condition is called the Purkinje effect.

Visual phototransduction Sensory transduction of the visual system

Visual phototransduction is the sensory transduction of the visual system. It is a process by which light is converted into electrical signals in the rod cells, cone cells and photosensitive ganglion cells of the retina of the eye. This cycle was elucidated by George Wald (1906–1997) for which he received the Nobel Prize in 1967. It is so called "Wald's Visual Cycle" after him.

Amacrine cell

Amacrine cells are interneurons in the retina. They are named from the Greek roots a– ("non"), makr– ("long") and in– ("fiber"), because of their short neuronal processes. Amacrine cells are inhibitory neurons, and they project their dendritic arbors onto the inner plexiform layer (IPL), they interact with retinal ganglion cells and/or bipolar cells.

Retina horizontal cell

Horizontal cells are the laterally interconnecting neurons having cell bodies in the inner nuclear layer of the retina of vertebrate eyes. They help integrate and regulate the input from multiple photoreceptor cells. Among their functions, horizontal cells are believed to be responsible for increasing contrast via lateral inhibition and adapting both to bright and dim light conditions. Horizontal cells provide inhibitory feedback to rod and cone photoreceptors. They are thought to be important for the antagonistic center-surround property of the receptive fields of many types of retinal ganglion cells.

Intrinsically photosensitive retinal ganglion cells (ipRGCs), also called photosensitive retinal ganglion cells (pRGC), or melanopsin-containing retinal ganglion cells (mRGCs), are a type of neuron in the retina of the mammalian eye. The presence of ipRGCs was first suspected in 1927 when rodless, coneless mice still responded to a light stimulus through pupil constriction, This implied that rods and cones are not the only light-sensitive neurons in the retina. Yet research on these cells did not advance until the 1980s. Recent research has shown that these retinal ganglion cells, unlike other retinal ganglion cells, are intrinsically photosensitive due to the presence of melanopsin, a light-sensitive protein. Therefore they constitute a third class of photoreceptors, in addition to rod and cone cells.

Retinal implant

Retinal prostheses for restoration of sight to patients blinded by retinal degeneration are being developed by a number of private companies and research institutions worldwide. The system is meant to partially restore useful vision to people who have lost their photoreceptors due to retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Three types of retinal implants are currently in clinical trials: epiretinal, subretinal, and suprachoroidal. Retinal implants introduce visual information into the retina by electrically stimulating the surviving retinal neurons. So far, elicited percepts had rather low resolution, and may be suitable for light perception and recognition of simple objects.

Lateral inhibition Capacity of an excited neuron to reduce activity of its neighbors

In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased sensory perception. It is also referred to as lateral antagonism and occurs primarily in visual processes, but also in tactile, auditory, and even olfactory processing. Cells that utilize lateral inhibition appear primarily in the cerebral cortex and thalamus and make up lateral inhibitory networks (LINs). Artificial lateral inhibition has been incorporated into artificial sensory systems, such as vision chips, hearing systems, and optical mice. An often under-appreciated point is that although lateral inhibition is visualised in a spatial sense, it is also thought to exist in what is known as "lateral inhibition across abstract dimensions." This refers to lateral inhibition between neurons that are not adjacent in a spatial sense, but in terms of modality of stimulus. This phenomenon is thought to aid in colour discrimination.

Congenital stationary night blindness Medical condition

Congenital stationary night blindness (CSNB) is a rare non-progressive retinal disorder. People with CSNB often have difficulty adapting to low light situations due to impaired photoreceptor transmission. These patients may also have reduced visual acuity, myopia, nystagmus, and strabismus. CSNB has two forms -- complete, also known as type-1 (CSNB1), and incomplete, also known as type-2 (CSNB2), which are distinguished by the involvement of different retinal pathways. In CSNB1, downstream neurons called bipolar cells are unable to detect neurotransmission from photoreceptor cells. CSNB1 can be caused by mutations in various genes involved in neurotransmitter detection, including NYX. In CSNB2, the photoreceptors themselves have impaired neurotransmission function; this is caused primarily by mutations in the gene CACNA1F, which encodes a voltage-gated calcium channel important for neurotransmitter release. CSNB has been identified in horses and dogs as the result of mutations in TRPM1, GRM6, and LRIT3 .

Bipolar neuron Neuron with only one axon and one dendrite

A bipolar neuron, or bipolar cell, is a type of neuron that has two extensions. Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell, sight, taste, hearing, touch, balance and proprioception. The other shape classifications of neurons include unipolar, pseudounipolar and multipolar. During embryonic development, pseudounipolar neurons begin as bipolar in shape but become pseudounipolar as they mature.

The ribbon synapse is a type of neuronal synapse characterized by the presence of an electron-dense structure, the synaptic ribbon, that holds vesicles close to the active zone. It is characterized by a tight vesicle-calcium channel coupling that promotes rapid neurotransmitter release and sustained signal transmission. Ribbon synapses undergo a cycle of exocytosis and endocytosis in response to graded changes of membrane potential. It has been proposed that most ribbon synapses undergo a special type of exocytosis based on coordinated multivesicular release. This interpretation has recently been questioned at the inner hair cell ribbon synapse, where it has been instead proposed that exocytosis is described by uniquantal release shaped by a flickering vesicle fusion pore.

Non-spiking neuron

Non-spiking neurons are neurons that are located in the central and peripheral nervous systems and function as intermediary relays for sensory-motor neurons. They do not exhibit the characteristic spiking behavior of action potential generating neurons.

Retinal waves are spontaneous bursts of action potentials that propagate in a wave-like fashion across the developing retina. These waves occur before rod and cone maturation and before vision can occur. The signals from retinal waves drive the activity in the dorsal lateral geniculate nucleus (dLGN) and the primary visual cortex. The waves are thought to propagate across neighboring cells in random directions determined by periods of refractoriness that follow the initial depolarization. Retinal waves are thought to have properties that define early connectivity of circuits and synapses between cells in the retina. There is still much debate about the exact role of retinal waves; some contend that the waves are instructional in the formation of retinogeniculate pathways, while others argue that the activity is necessary, but not instructional in the formation of retinogeniculate pathways.

Douglas G. McMahon

Douglas G. McMahon is a professor of Biological Sciences and Pharmacology at Vanderbilt University. McMahon has contributed several important discoveries to the field of chronobiology and vision. His research focuses on connecting the anatomical location in the brain to specific behaviors. As a graduate student under Gene Block, McMahon identified that the basal retinal neurons (BRNs) of the molluscan eye exhibited circadian rhythms in spike frequency and membrane potential, indicating they are the clock neurons. He became the 1986 winner of the Society for Neuroscience's Donald B. Lindsley Prize in Behavioral Neuroscience for his work. Later, he moved on to investigate visual, circadian, and serotonergic mechanisms of neuroplasticity. In addition, he helped find that constant light can desynchronize the circadian cells in the suprachiasmatic nucleus (SCN). He has always been interested in the underlying causes of behavior and examining the long term changes in behavior and physiology in the neurological modular system. Recently, McMahon helped identify a novel retrograde neurotransmission system in the retina involving the melanopsin ganglion cells in retinal dopaminergic amacrine neurons.

References

  1. "Werblin Lab".
  2. "John Simon Guggenheim Foundation - Frank Simon Werblin".
  3. Werblin, Frank (1969). "Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording". Journal of Neurophysiology. 32 (3): 339–355. doi:10.1152/jn.1969.32.3.339. PMID   4306897.
  4. Werblin, Frank (1978). "Transmission along and between rods in the tiger salamander retina". Journal of Physiology. 280: 449–470. doi:10.1113/jphysiol.1978.sp012394. PMC   1282669 . PMID   211229.
  5. Maguire, Greg (1989). "Amacrine cell interactions underlying the response to change in the tiger salamander retina". Journal of Neuroscience. 9 (2): 726–735. doi: 10.1523/jneurosci.09-02-00726.1989 . PMC   6569802 . PMID   2918384.
  6. Maguire, Greg (1989). "Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander". Proceedings of the National Academy of Sciences. 86 (24): 10144–10147. Bibcode:1989PNAS...8610144M. doi: 10.1073/pnas.86.24.10144 . PMC   298663 . PMID   2557620.
  7. Maguire, Greg (1990). "Synaptic and voltage-gated currents in interplexiform cells of the tiger salamander retina". Journal of General Physiology. 95 (4): 755–770. doi:10.1085/jgp.95.4.755. PMC   2216332 . PMID   2159975.
  8. Maguire, Greg (1999). "Rapid desensitization converts prolonged glutamate release into a transient EPSC at ribbon synapses between retinal bipolar and amacrine cells". European Journal of Physiology. 11 (1): 353–362. doi:10.1046/j.1460-9568.1999.00439.x. PMID   9987038. S2CID   11766312.
  9. Maguire, Greg (1999). "Spatial heterogeneity and function of voltage- and ligand-gated ion channels in retinal amacrine neurons". Proceedings of the Royal Society B. 266 (1423): 987–992. doi:10.1098/rspb.1999.0734. PMC   1689933 . PMID   10380682.
  10. Connaughton, Vicki (1988). "Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice". European Journal of Neuroscience. 10 (4): 1350–1362. doi:10.1046/j.1460-9568.1998.00152.x. PMID   9749789. S2CID   1775687.
  11. Sassoè-Pognetto, M (1996). "Synaptic organization of an organotypic slice culture of the mammalian retina". Visual Neuroscience. 13 (4): 759–771. doi:10.1017/s0952523800008634. PMID   8870231.
  12. Werblin, Frank (2011). "The retinal hypercircuit: A repeating synaptic interactive motif underlying visual function". Journal of Physiology. 589 (15): 3691–3702. doi:10.1113/jphysiol.2011.210617. PMC   3171878 . PMID   21669978.
  13. "Leading retina researcher to receive eighth annual Pepose Award in Vision Sciences | All News | News and Events | Brandeis Alumni & Friends | Brandeis University". alumni.brandeis.edu. Retrieved 2020-02-08.
  14. Lien, Tracy (March 19, 2016). "Cutting Edge Vision uses virtual reality headsets to help people with low vision". LA Times.
  15. Lien, Tracy (July 14, 2020). "Technology Bridges the Gap to Better Sight". The New York Times.