Frattini's argument

Last updated

In group theory, a branch of mathematics, Frattini's argument is an important lemma in the structure theory of finite groups. It is named after Giovanni Frattini, who used it in a paper from 1885 when defining the Frattini subgroup of a group. The argument was taken by Frattini, as he himself admits, from a paper of Alfredo Capelli dated 1884. [1]

Contents

Frattini's argument

Statement

If is a finite group with normal subgroup , and if is a Sylow p-subgroup of , then

where denotes the normalizer of in , and means the product of group subsets.

Proof

The group is a Sylow -subgroup of , so every Sylow -subgroup of is an -conjugate of , that is, it is of the form for some (see Sylow theorems). Let be any element of . Since is normal in , the subgroup is contained in . This means that is a Sylow -subgroup of . Then, by the above, it must be -conjugate to : that is, for some

and so

Thus

and therefore . But was arbitrary, and so

Applications

References

Further reading