This article needs to be updated.(July 2019) |
Free-Air Carbon dioxide Enrichment (FACE) is a method used by ecologists and plant biologists that raises the concentration of CO2 in a specified area and allows the response of plant growth to be measured. Experiments using FACE are required because most studies looking at the effect of elevated CO2 concentrations have been conducted in labs and where there are many missing factors including plant competition. Measuring the effect of elevated CO2 using FACE is a more natural way of estimating how plant growth will change in the future as the CO2 concentration rises in the atmosphere. FACE also allows the effect of elevated CO2 on plants that cannot be grown in small spaces (trees for example) to be measured. However, FACE experiments carry significantly higher costs relative to greenhouse experiments.
Horizontal or vertical pipes are placed in a circle around the experimental plot, which can be between 1m and 30m in diameter, and these emit CO2 enriched air around the plants. The concentration of CO2 is maintained at the desired level through placing sensors in the plot which feedback to a computer which then adjusts the flow of CO2 from the pipes.
FACE circles have been used across in parts of the United States in temperate forests and also in stands of aspen in Italy. The method is also utilized for agricultural research. For example, FACE circles have been used to measure the response of soybean plants to increased levels of ozone and carbon dioxide at research facilities at the University of Illinois at Urbana–Champaign. [1] FACE technologies have yet to be implemented in old growth forests, or key biomes for carbon sequestration, such as tropical forests, or boreal forests and identifying future research priorities for these regions is considered an urgent concern. [2]
Examples of this method being used globally include TasFACE, which is investigating the effects of elevated CO2 on a native grassland in Tasmania, Australia. The National Wheat FACE array is presently being established in Horsham, Victoria, Australia as a joint project of the Victorian Department of Primary Industries and the University of Melbourne. [3] EucFACE is Australia's only forest FACE experiment, and was established by the University of Western Sydney in Cumberland Plain Woodland dominated by Eucalyptus tereticornis near Richmond, New South Wales in 2012. [4]
A FACE experiment began at Duke University in June 1994. The Blackwood Division of the Duke Forest contains the Forest-Atmosphere Carbon Transfer and Storage facility. This consists of four free-air CO2 enrichment plots which provide higher levels of atmospheric CO2 concentration and four plots that provide ambient CO2 control. [5] There have been 253 publications reporting on the findings of the experiment. [6]
In 2004, a meta-analysis of 15 years of FACE studies, found the response to elevated CO2 using FACE only slightly increases yield in crop plants (5-7% in rice and 8% in wheat). These responses were lower than was expected from previous studies that measured the effect in labs or enclosures. This has important consequences as previous projections of food production have assumed that decreases in yield as a result of climate change would be offset by increases in yield due to elevated CO2. [7]
As of 2010, a more complete picture is emerging, with significant difference in response being observed for different plant species, water availabilities and the concentration of ozone. [8] For example, the 2007-2010 Horsham FACE project (using wheat crops) in Victoria, Australia, found "The effect of eCO2 was to increase crop biomass at maturity by 20% and anthesis root biomass increased by 49%". [9] This study also concludes that "a wide gene pool needs to be investigated to see if particular cultivars are able to respond more to eCO2". Increased atmospheric carbon dioxide has been found to reduce plant water use, and consequently, the uptake of nitrogen, so particularly benefiting crop yields in arid regions. [10] The carbohydrate content of crops is increased from photosynthesis, but protein content is reduced due to lower nitrogen uptake. Legumes and their symbiotic "nitrogen fixing" bacteria appear to benefit more from increased carbon dioxide levels than most other species.
Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature and at normally-encountered concentrations it is odorless. As the source of carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater.
In botany, a stoma, also called a stomate, is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange between the internal air spaces of the leaf and the atmosphere. The pore is bordered by a pair of specialized parenchyma cells known as guard cells that regulate the size of the stomatal opening.
A greenhouse is a structure that is designed to regulate the temperature and humidity of the environment inside. There are different types of greenhouses, but they all have large areas covered with transparent materials that let sunlight pass and block it as heat. The most common materials used in modern greenhouses for walls and roofs are rigid plastic made of polycarbonate, plastic film made of polyethylene, or glass panes. When the inside of a greenhouse is exposed to sunlight, the temperature increases, providing a sheltered environment for plants to grow even in cold weather.
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig's law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.
Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process lowers the efficiency of photosynthesis, potentially lowering photosynthetic output by 25% in C3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria.
C3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C4 and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
Sherwood B. Idso was the president of the Center for the Study of Carbon Dioxide and Global Change, which rejects the scientific consensus on climate change. Previously he was a Research Physicist with the U.S. Department of Agriculture's Agricultural Research Service at the U.S. Water Conservation Laboratory in Phoenix, Arizona, where he worked since June 1967. He was also closely associated with Arizona State University over most of this period, serving as an adjunct professor in the Departments of Geology, Geography, and Botany and Microbiology. His two sons, Craig and Keith, are, respectively, the founder and vice president of the Center for the Study of Carbon Dioxide and Global Change.
Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:
Theoretical production ecology tries to quantitatively study the growth of crops. The plant is treated as a kind of biological factory, which processes light, carbon dioxide, water, and nutrients into harvestable parts. Main parameters kept into consideration are temperature, sunlight, standing crop biomass, plant production distribution, nutrient and water supply.
Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.
In Earth's atmosphere, carbon dioxide is a trace gas that plays an integral part in the greenhouse effect, carbon cycle, photosynthesis and oceanic carbon cycle. It is one of three main greenhouse gases in the atmosphere of Earth. The concentration of carbon dioxide in the atmosphere reached 427 ppm (0.0427%) on a molar basis in 2024, representing 3341 gigatonnes of CO2. This is an increase of 50% since the start of the Industrial Revolution, up from 280 ppm during the 10,000 years prior to the mid-18th century. The increase is due to human activity.
Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.
William H. Schlesinger is a biogeochemist and the retired president of the Cary Institute of Ecosystem Studies, an independent not-for-profit environmental research organization in Millbrook, New York. He assumed that position after 27 years on the faculty of Duke University, where he served as the Dean of the Nicholas School of the Environment and Earth Sciences and James B. Duke Professor of Biogeochemistry.
Photosynthesis systems are electronic scientific instruments designed for non-destructive measurement of photosynthetic rates in the field. Photosynthesis systems are commonly used in agronomic and environmental research, as well as studies of the global carbon cycle.
Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.
There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the risk of several regions suffering simultaneous crop failures. Currently this risk is regarded as rare but if these simultaneous crop failures did happen they would have significant consequences for the global food supply. Many pests and plant diseases are also expected to either become more prevalent or to spread to new regions. The world's livestock are also expected to be affected by many of the same issues, from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.
The CO2 fertilization effect or carbon fertilization effect causes an increased rate of photosynthesis while limiting leaf transpiration in plants. Both processes result from increased levels of atmospheric carbon dioxide (CO2). The carbon fertilization effect varies depending on plant species, air and soil temperature, and availability of water and nutrients. Net primary productivity (NPP) might positively respond to the carbon fertilization effect, although evidence shows that enhanced rates of photosynthesis in plants due to CO2 fertilization do not directly enhance all plant growth, and thus carbon storage. The carbon fertilization effect has been reported to be the cause of 44% of gross primary productivity (GPP) increase since the 2000s. Earth System Models, Land System Models and Dynamic Global Vegetation Models are used to investigate and interpret vegetation trends related to increasing levels of atmospheric CO2. However, the ecosystem processes associated with the CO2 fertilization effect remain uncertain and therefore are challenging to model.
Reinhart Jan Maria Ceulemans is an emeritus professor of Ecology and previous director of the Research Center of Excellence PLECO of the University of Antwerp. He has been vice-dean of the Faculty of Sciences at the University of Antwerp, and was a visiting professor at the University of Washington, Seattle, at the Université Paris-Sud, Orsay and at the University of Ghent. He officially retired in October 2019 and is now a visiting professor at the University of Antwerp (Belgium), a researcher at CzechGlobe Academy of Sciences in Brno and an international consultant to the Slovenian Forestry Institute.
Lewis H. Ziska is an American plant physiologist, academic and author. He is an associate professor in the Environmental Health Sciences at the Mailman School of Public Health at Columbia University.
Belinda Medlyn FAA is a plant physiologist, ecologist and mathematical modeller. Her research explores how plants, and particularly trees, respond to increases in atmospheric carbon dioxide.
{{cite web}}
: CS1 maint: archived copy as title (link)