Free-piston linear generator

Last updated

The free-piston linear generator (FPLG) uses chemical energy from fuel to drive magnets through a stator and converts this linear motion into electric energy. Because of its versatility, low weight and high efficiency, it can be used in a wide range of applications, although it is of special interest to the mobility industry as range extenders for electric vehicles.

Contents

Description

The free-piston engine linear generators can be divided in 3 subsystems: [1] [2]

The FPLG has many potential advantages compared to traditional electric generator powered by an internal combustion engine. One of the main advantages of the FPLG comes from the absence of crankshaft. It leads to a smaller and lighter generator with fewer parts. This also allows a variable compression and expansion ratios, which makes it possible to operate with different kinds of fuel.

The linear generator also allows the control of the resistance force, and therefore a better control of the piston's movement and of the reaction. The total efficiency (including mechanical and generator) of free-piston linear generators can be significantly higher than conventional internal combustion engines and comparable to fuel cells.

Development

FPLG patent from 1943 - Pontus Ostenberg, USA by P. Ostenberg Early FPLG design - 1943 Pontus Ostenberg, USA.jpg
FPLG patent from 1943 - Pontus Ostenberg, USA by P. Ostenberg

The first patents of free-piston linear generators date from around 1940, however in the last decades, especially after the development of rare-earth magnets and power electronics, many different research groups have been working in this field. [3] [4] These include:

Although there is a variety of names and abbreviations for the technology, the terms "Free-piston linear generator" and "FPLG" particularly refer to the project at German Aerospace Center.

Operation

The free-piston linear generator generally consists of three subsystems: combustion chamber, linear generator and return unit (normally a gas spring), which are coupled through a connecting rod.

In the combustion chamber, a mixture of fuel and air is ignited, increasing the pressure and forcing the moving parts (connection rod, linear generator and pistons) in the direction of the gas spring. The gas spring is compressed, and, while the piston is near the bottom dead center (BDC), fresh air and fuel are injected into the combustion chamber, expelling the exhaust gases.

The gas spring pushes the moving parts assembly back to the top dead center (TDC), compressing the mixture of air and fuel that was injected and the cycle repeats. This works in a similar manner to the two-stroke engine, however it is not the only possible configuration.

The linear generator can generate a force opposed to the motion, not only during expansion but also during compression. The magnitude and the force profile affect the piston movement, as well as the overall efficiency.

Variations

The FPLG has been conceived in many different configurations, but for most applications, particularly for the automotive industry, focus has been on two opposed pistons in the same cylinder with one combustion chamber with a gas spring at the end of each cylinder. This balances out the forces in order to reduce vibration and noise. In the simplest case, a second unit is just a mirror of the first, with no functional connection to the first. Alternatively, a single combustion chamber or gas spring can be used, allowing for a more compact design and easier synchronization between the pistons.

The gas spring and combustion chamber can be placed on the ends of the connection rods, or they can share the same piston, using opposite sides in order to reduce space.

The linear generator itself has also many different configurations and forms. It can be designed as round tube, a cylinder or even flat plate in order to reduce the center of gravity, and/or improve the heat dissipation.

The free-piston linear generator's great versatility comes from the absence of a crankshaft, removing a great pumping loss, giving the engine a further degree of freedom. The combustion can be two-stroke engine or four-stroke engine. However, a four-stroke requires a much higher intermediate storage of energy, the rotational inertia of the crankshaft, to propel the piston through the four strokes. With the absence of a crankshaft, a gas spring would need to power the piston through the intake, compression, and exhaust strokes. Hence the reason why most of the current research focuses on the two-strokes cycle.

Several variations are possible for combustion:

The DLR research

The Institute of Vehicle Concepts of the German Aerospace Center is currently developing a FPLG (or Freikolbenlineargenerator - FKLG) since 2002, and has published several papers about this subject. [1] [2] [17] [18]

During the first few years of research, the theoretical background along with the 3 subsystems were developed separately. In 2013, the first entire system was built and operated successfully. [19]

The German center is currently into its 2nd version of the entire system, on which two opposed cylinders will be used in order to reduce vibration and noise, making it viable for the automotive industry.

See also

Related Research Articles

<span class="mw-page-title-main">Diesel engine</span> Type of internal combustion engine

The diesel engine, named after Rudolf Diesel, is an internal combustion engine in which ignition of the fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression; thus, the diesel engine is called a compression-ignition engine. This contrasts with engines using spark plug-ignition of the air-fuel mixture, such as a petrol engine or a gas engine.

<span class="mw-page-title-main">Engine</span> Machine that converts one or more forms of energy into mechanical energy (of motion)

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

<span class="mw-page-title-main">Reciprocating engine</span> Engine utilising one or more reciprocating pistons

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert high temperature and high pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the Stirling engine for niche applications. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

<span class="mw-page-title-main">Wankel engine</span> Combustion engine using an eccentric rotary design

The Wankel engine is a type of internal combustion engine using an eccentric rotary design to convert pressure into rotating motion. It was invented by German engineer Felix Wankel, and designed by German engineer Hanns-Dieter Paschke. The Wankel engine's rotor, which creates the turning motion, is similar in shape to a Reuleaux triangle, with the sides having less curvature. The rotor rotates inside an oval-like epitrochoidal housing, around a central output shaft. The rotor spins in a hula-hoop fashion around the central output shaft, spinning the shaft via toothed gearing.

<span class="mw-page-title-main">Two-stroke engine</span> Internal combustion engine type

A two-strokeengine is a type of internal combustion engine that completes a power cycle with two strokes of the piston during one power cycle, this power cycle being completed in one revolution of the crankshaft. A four-stroke engine requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust functions occurring at the same time.

A stratified charge engine describes a certain type of internal combustion engine, usually spark ignition (SI) engine that can be used in trucks, automobiles, portable and stationary equipment. The term "stratified charge" refers to the working fluids and fuel vapors entering the cylinder. Usually the fuel is injected into the cylinder or enters as a fuel rich vapor where a spark or other means are used to initiate ignition where the fuel rich zone interacts with the air to promote complete combustion. A stratified charge can allow for slightly higher compression ratios without "knock," and leaner air/fuel ratio than in conventional internal combustion engines.

<span class="mw-page-title-main">Four-stroke engine</span> Internal combustion engine type

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing a partial vacuum in the cylinder through its downward motion.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust port.
<span class="mw-page-title-main">Brayton cycle</span> Thermodynamic cycle

The Brayton cycle is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton engines used a piston compressor and piston expander, but modern gas turbine engines and airbreathing jet engines also follow the Brayton cycle. Although the cycle is usually run as an open system, it is conventionally assumed for the purposes of thermodynamic analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.

<span class="mw-page-title-main">Atkinson cycle</span> Thermodynamic cycle

The Atkinson-cycle engine is a type of internal combustion engine invented by James Atkinson in 1882. The Atkinson cycle is designed to provide efficiency at the expense of power density.

<span class="mw-page-title-main">Crankcase</span> Crankshaft housing in reciprocating combustion engines

In a piston engine, the crankcase is the housing that surrounds the crankshaft. In most modern engines, the crankcase is integrated into the engine block.

<span class="mw-page-title-main">Bourke engine</span> Type of internal combustion engine

The Bourke engine was an attempt by Russell Bourke, in the 1920s, to improve the two-stroke internal combustion engine. Despite finishing his design and building several working engines, the onset of World War II, lack of test results, and the poor health of his wife compounded to prevent his engine from ever coming successfully to market. The main claimed virtues of the design are that it has only two moving parts, is lightweight, has two power pulses per revolution, and does not need oil mixed into the fuel.

<span class="mw-page-title-main">Linear alternator</span>

A linear alternator is essentially a linear motor used as an electrical generator.

<span class="mw-page-title-main">Hot-bulb engine</span> Internal combustion engine

The hot-bulb engine is a type of internal combustion engine in which fuel ignites by coming in contact with a red-hot metal surface inside a bulb, followed by the introduction of air (oxygen) compressed into the hot-bulb chamber by the rising piston. There is some ignition when the fuel is introduced, but it quickly uses up the available oxygen in the bulb. Vigorous ignition takes place only when sufficient oxygen is supplied to the hot-bulb chamber on the compression stroke of the engine.

The split-cycle engine is a type of internal combustion engine.

The term six-stroke engine has been applied to a number of alternative internal combustion engine designs that attempt to improve on traditional two-stroke and four-stroke engines. Claimed advantages may include increased fuel efficiency, reduced mechanical complexity, and/or reduced emissions. These engines can be divided into two groups based on the number of pistons that contribute to the six strokes.

<span class="mw-page-title-main">Free-piston engine</span>

A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device and a load device.

<span class="mw-page-title-main">Two-stroke diesel engine</span> Engine type

A two-stroke diesel engine is a diesel engine that uses compression ignition in a two-stroke combustion cycle. It was invented by Hugo Güldner in 1899.

Two-and-four-stroke engines are engines that combine elements from both two-stroke and four-stroke engines. They usually incorporate two pistons.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to. This replaced the external combustion engine for applications where the weight or size of an engine were more important.

References

  1. 1 2 Pohl, Sven-Erik (2007). Der Freikolbenlineargenerator - Theoretische Betrachtungen des Gesamtsystems und experimentelle Untersuchungen zum Teilsystem der Gasfeder. Hamburg: Helmut-Schmidt-Universität.
  2. 1 2 Ferrari, Cornelius (2012). Entwicklung und Untersuchung eines Freikolbenlineargenerators unter besonderer Berücksichtigung des verbrennungsmotorischen Teilsystems mit Hilfe eines neuartigen vollvariablen Prüfstands. Stuttgart: Universität Stuttgart.
  3. R. Mikalsen; A.P. Roskilly. "A review of free-piston engine history and applications" (PDF).
  4. Kosaka, H.; Akita, T.; Moriya, K.; Goto, S.; et al. (2014). "Development of Free Piston Engine Linear Generator System Part 1 - Investigation of Fundamental Characteristics". SAE Technical Paper Series. Vol. 1. SAE International. doi:10.4271/2014-01-1203.
  5. 1 2 3 "Libertine LPE free piston technology targeting power generation, waste-heat recovery and range-extended EV applications; feasibility study with PETRONAS".
  6. "Home". libertine.co.uk.
  7. Van Blarigan, Peter (2001). "ADVANCED INTERNAL COMBUSTION ELECTRICAL GENERATOR" (PDF).
  8. "PSA evaluating Aquarius Engines' free-piston linear generator for range-extender".
  9. Sir Joseph Swan Centre for Energy Research (2016-07-21), Free-piston Engine Range Extender Technology , retrieved 2016-09-10
  10. "Modeling a Free-Piston Engine Genset for Hybrid Applications".
  11. DLR researchers unveil a new kind of range extender for electric cars
  12. Carter, Douglas; Wechner, Edward (2003). "The Free Piston Power Pack: Sustainable Power for Hybrid Electric Vehicles". SAE international. SAE Technical Paper Series. SAE. 1. doi:10.4271/2003-01-3277.
  13. Hansson, Jorgen (2006). "Analysis and Control of a Hybrid Vehicle Powered by a Free-Piston Energy Converter". Königlich Technische Hochschule Portal.
  14. "Linear Combustion Engine". Linear Combustion Engine. 2004.
  15. BEETRON: The transition to sustainable power generation
  16. "Toyota develops high-efficiency 'free piston' no-crankshaft combustion engine… to power an EV". Extreme Tech.
  17. Kock, F.; Haag, J. & Friedrich, H. (2013). The Free Piston Linear Generator - Development of an Innovative, Compact, Highly Efficient Range-Extender Module. SAE International.
  18. Kock, F. (2015). Steuerung und Regelung des Freikolbenlineargenerators - Entwicklungsmethode und Regelungskonzept für den Betrieb eines neuartigen Energiewandlers. Stuttgart: Deutsche Zentrum für Luft- und Raumfahrt.
  19. "DLR team develops demonstrator of free-piston linear generator as range extender for EVs". Green Car Congress. 2013-02-20.