Free flight (air traffic control)

Last updated

Free flight is a developing air traffic control method that uses no centralized control (e.g. air traffic controllers). Instead, parts of airspace are reserved dynamically and automatically in a distributed way using computer communication to ensure the required separation between aircraft. This new system may be implemented into the U.S. air traffic control system in the next decade.[ citation needed ] Its potential impact on the operations of the national airspace system is disputed, however.[ citation needed ]

Contents

Overview

Free flight is a new concept being developed to take the place of the current air traffic management methods through the use of technology. True free flight eliminates the need for air traffic control (ATC) operators by giving the responsibility to the pilot in command. This gives the pilot the ability to change trajectory in mid-flight. With the aid of computer systems and/or ATC, pilots will be able to make more flight path decisions independently. As in most complex systems, distributed yet cooperative decision making is believed to be more efficient than the centralized control characterized by the current mode of air traffic management.[ citation needed ]

History

Free flight began as an effort to become less dependent on the human factor and more dependent on the growing technology of its day. As airlines expanded their fleets in the 1960s, they increased the need for air traffic management (ATM).[ citation needed ] ATM created instrument flight rules (commonly known as "IFR") to manage the growing numbers of aircraft. This helped control air traffic, but required a significant amount of time, effort, and resources to maintain IFR flight.[ citation needed ]

In 1968, the Federal Aviation Administration issued the High Density Airport Rule to reduce the number of aircraft in a given airport.[ citation needed ] Twenty years earlier Crocker Snow used television cameras to locate his position when flying an aircraft.[ citation needed ] He sent up signals to the aircraft so they could get a third person perspective of the aircraft's surrounding. This idea worked but was too costly and was impractical. In the 1960s transponders removed the need to use television cameras.

Other problems that occurred in the air traffic industry were the OPEC fuel crises and the Professional Air Traffic Controllers Organization (PATCO) strike of 1982 resulting in the firing of thousands of controllers by President Ronald Reagan. This showed how vulnerable air transportation was to economic forces.[ citation needed ]

The key components of free flight were identified in 1971 by United Airlines systems manager William Cotton, although the technology to implement it was not available for another two decades. [1]

In the 1970's the GPS satellite navigation system was deployed by the US Department of Defense and the aviation industry saw the opportunity to use GPS for potentially more efficient air traffic management capabilities through an increased use of this capability coupled with automation enabled by it.[ citation needed ]

In 1991 the International Civil Aviation Organization created the Future Air Navigation System Panel. The panel produced descriptions of satellite-based technology applications and their use in air traffic management. A larger role emerged for "user-defined trajectory" that became known as "free flight" by the mid-1990s.

The first hearings on implementing free flight were held in August 1994 by Representative Collin Peterson (D-Minnesota), chair of the House subcommittee with investigative jurisdiction over the FAA. [1]

In 1995 David Hinson, the FAA administrator, organized a task force to draw up detailed plans to implement free flight. The report, issued in October that year called for three phases; [1] [2] phase I ended at the end of 2002, the others have not been started. A method and system for an automated tool to enable en route traffic controllers to optimize aircraft routes dynamically was patented by the NASA in 2001. [3]

True free flight applications exist only on a small scale in selected airspace operations where only the most well equipped aircraft operate, such as at high altitude by commercial airliners.[ citation needed ] There are many versions of free flight being conceived for the Next Generation Air Transportation System (NGATS). The free flight vision is expected to slowly emerge over the next 20–30 years as NGATS emerges from billions of dollars of development, testing, careful transition planning, training, and deployment of ground-based and airborne systems by all types of aircraft. Key elements of NGATS include the automatic dependent surveillance-broadcast (ADS-B) and what can be expected to be an ever-evolving, net-centric information application called the System Wide Information Management System or "SWIM".

Regions

The regions are broken up into unrestricted, transition, and restricted.

Unrestricted
In the unrestricted region there will be very little guidance from ATC since aircraft density will be low. Pilots will have a great deal of flexibility to exercise free flight in this area. However, it may become complicated when bad weather is calculated into the equation. Pilots may have to adjust their course to avoid inclement weather. In doing so other pilots attempting to avoid the conditions may cross path with each other. ATC will have to assist the pilots and guide them through this issue.
Transition
Slightly restricted however pilots retain some flexibility to exercise free flight.
Restricted
The freedom of the pilot has been restricted significantly.

Approaches of free flight

There are several approaches that free flight can move towards.

Airborne

In the airborne approach, the separation responsibility is entirely with the pilots, operating under self separation conditions. The pilot is responsible for detecting and resolving problems while in flight. Computers will help aid the aircrew in this matter. Information, such as weather reports or other aircraft position, is forwarded from ATC (or automated stations) to the aircraft so the pilots can decide the best course of action to take. The surveillance system can either be on the ground or on board the aircraft.

Problems with this method include complete surveillance information assurance, communication with different equipment, smaller aircraft incapable of carrying the equipment, and the possibility of a system malfunctioning. It is extremely difficult to have total assurance of all air traffic. If two aircraft flying with different equipment encounter each other, the equipment's data will have to be sent to the receiving equipment as well as the normal information such as speed. Larger planes will have no problems with the equipment, but smaller aircraft will have problems communicating to each other if it lacks an essential component. Surely, if this was a one-on-one scenario, it would be easy to solve, but if multiple aircraft were involved, the difficulty of finding a solution compounds. Lastly, if a system fails or the software has a computer programming error, the aircraft and other aircraft will be flying blind.

Ground

All of the data are sent to ATC and pilot requests a particular flight path. Communication will be from aircraft to ATC instead of aircraft to aircraft.

In this approach the aircrew will not have the full situational awareness experience in the airborne approach. Aircrew will not be able to handle uncertainties or help out with the uncertainties in this approach. If one aircraft does not follow the directive ATC issues, the directive will have to be reissued and in turn increase the workload of ATM operators.

Mixed focus

Mixed focus approach which is a combination of both the airborne and ground approach. AOC initially sends route to aircraft and ATM. If the aircrew does not like the route, it sends the route changes to ATM and AOC.

Separation

Aircraft separation is divided up into the protected zone and the alert zone. In the larger zone, called the alert zone, the system informs the aircraft through one of the three approaches that an aircraft is in the vicinity. It acts as a flag and merely alerts the aircrew. In the protected zone, the area must remain sterile of all foreign objects. It is the minimum distance anything can approach. The system should alert the aircrew before anything comes close to it, but if it manages to enter the protected zone, aircrew will take evasive maneuver to avoid a collision.

Conflict and detection method using center-TRACON automation system

Center-TRACON automation system (CTAS) receives data from aircraft trajectory, atmospheric model, aircraft performance, and other contributing factors. Based on the information it receives it will calculate the best trajectory though equations and logic. CTAS is currently being used on a small scale.

See also

Related Research Articles

<span class="mw-page-title-main">Avionics</span> Electronic systems used on aircraft

Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

<span class="mw-page-title-main">Instrument flight rules</span> Civil aviation regulations for flight on instruments

In aviation, instrument flight rules (IFR) is one of two sets of regulations governing all aspects of civil aviation aircraft operations; the other is visual flight rules (VFR).

In aviation, visual flight rules (VFR) are a set of regulations under which a pilot operates an aircraft in weather conditions generally clear enough to allow the pilot to see where the aircraft is going. Specifically, the weather must be better than basic VFR weather minima, i.e., in visual meteorological conditions (VMC), as specified in the rules of the relevant aviation authority. The pilot must be able to operate the aircraft with visual reference to the ground, and by visually avoiding obstructions and other aircraft.

<span class="mw-page-title-main">Air traffic control</span> Service to direct pilots of aircraft

Air traffic control (ATC) is a service provided by ground-based air traffic controllers (people) who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airspace. The primary purpose of ATC worldwide is to prevent collisions, organise and expedite the flow of traffic in the air, and provide information and other support for pilots.

<span class="mw-page-title-main">Pacific Southwest Airlines Flight 182</span> 1978 mid-air collision over San Diego

Pacific Southwest Airlines Flight 182 was a scheduled flight on September 25, 1978, by Pacific Southwest Airlines (PSA), from Sacramento to San Diego (SAN), with a stopover at Los Angeles (LAX). The aircraft serving the flight, a Boeing 727-214, collided mid-air with a private Cessna 172 over San Diego, California. It was Pacific Southwest Airlines' first fatal accident, and it remains the deadliest air disaster in California history. At the time, it was the deadliest air crash to occur in the United States, and remained so until the crash of American Airlines Flight 191 in May 1979.

<span class="mw-page-title-main">Irish Aviation Authority</span> Commercial semi-state company in Ireland

The Irish Aviation Authority (IAA) is a commercial semi-state company in Ireland responsible for the regulation of safety aspects of air travel. Its head office is in The Times Building in Dublin.

<span class="mw-page-title-main">Traffic collision avoidance system</span> Aircraft collision avoidance system

A traffic alert and collision avoidance system is an aircraft collision avoidance system designed to reduce the incidence of mid-air collision (MAC) between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of MAC. It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. ACAS/TCAS is based on secondary surveillance radar (SSR) transponder signals, but operates independently of ground-based equipment to provide advice to the pilot on potentially conflicting aircraft.

The world's navigable airspace is divided into three-dimensional segments, each of which is assigned to a specific class. Most nations adhere to the classification specified by the International Civil Aviation Organization (ICAO) and described below, though they might use only some of the classes defined below, and significantly alter the exact rules and requirements. Similarly, individual nations may also designate special use airspace (SUA) with further rules for reasons of national security or safety.

<span class="mw-page-title-main">Required navigation performance</span> Path selection method for aircraft

Required navigation performance (RNP) is a type of performance-based navigation (PBN) that allows an aircraft to fly a specific path between two 3D-defined points in space.

The Future Air Navigation System (FANS) is an avionics system which provides direct data link communication between the pilot and the air traffic controller. The communications include air traffic control clearances, pilot requests and position reporting. In the FANS-B equipped Airbus A320 family aircraft, an Air Traffic Services Unit (ATSU) and a VHF Data Link radio (VDR3) in the avionics rack and two data link control and display units (DCDUs) in the cockpit enable the flight crew to read and answer the controller–pilot data link communications (CPDLC) messages received from the ground.

Controller–pilot data link communications (CPDLC), also referred to as controller pilot data link (CPDL), is a method by which air traffic controllers can communicate with pilots over a datalink system.

The Next Generation Air Transportation System (NextGen) is an ongoing United States Federal Aviation Administration (FAA) project to modernize the National Airspace System (NAS). The FAA began work on NextGen improvements in 2007 and plans to finish the final implementation segment by 2030. The goals of the modernization include using new technologies and procedures to increase the safety, efficiency, capacity, access, flexibility, predictability, and resilience of the NAS while reducing the environmental impact of aviation.

<span class="mw-page-title-main">1956 Grand Canyon mid-air collision</span> Mid-air collision on June 30, 1956 over the Grand Canyon

The Grand Canyon mid-air collision occurred in the western United States on June 30, 1956, when a United Airlines Douglas DC-7 struck a Trans World Airlines Lockheed L-1049 Super Constellation over Grand Canyon National Park, Arizona. The first plane fell into the canyon while the other slammed into a rock face. All 128 on board both airplanes perished, making it the first commercial airline incident to exceed one hundred fatalities. The airplanes had departed Los Angeles International Airport minutes apart from each other and headed for Chicago and Kansas City, respectively. The collision took place in uncontrolled airspace, where it was the pilots' responsibility to maintain separation. This highlighted the antiquated state of air traffic control, which became the focus of major aviation reforms.

The National Airspace System (NAS) is the airspace, navigation facilities and airports of the United States along with their associated information, services, rules, regulations, policies, procedures, personnel and equipment. It includes components shared jointly with the military. It is one of the most complex aviation systems in the world, and services air travel in the United States and over large portions of the world's oceans.

<span class="mw-page-title-main">Air Traffic Organization</span>

The Air Traffic Organization (ATO) is an air navigation service provider in the United States of America. The ATO is the operational division of the Federal Aviation Administration (FAA).

<span class="mw-page-title-main">Automatic Dependent Surveillance–Broadcast</span> Aircraft surveillance technology

Automatic Dependent Surveillance–Broadcast (ADS-B) is an aviation surveillance technology and form of electronic conspicuity in which an aircraft determines its position via satellite navigation or other sensors and periodically broadcasts its position and other related data, enabling it to be tracked. The information can be received by air traffic control ground-based or satellite-based receivers as a replacement for secondary surveillance radar (SSR). Unlike SSR, ADS-B does not require an interrogation signal from the ground or from other aircraft to activate its transmissions. ADS-B can also receive point-to-point by other nearby equipped "ADS-B In" equipped aircraft to provide traffic situational awareness and support self-separation. ADS-B is "automatic" in that it requires no pilot or external input to trigger its transmissions. It is "dependent" in that it depends on data from the aircraft's navigation system to provide the transmitted data.

Single European Sky ATM Research (SESAR) is a collaborative project to completely overhaul European airspace and its air traffic management (ATM). The actual program is managed by the SESAR Joint Undertaking as a public–private partnership (PPP).

The Polish Air Navigation Services Agency (PANSA) started its duty in 2007 as an independent unit, after isolating from "Polish Airports". It is running as a state agency which deals with air traffic management (ATM). PANSA's main obligations and objects are:

Next Generation (NextGen) Data Communications, an element of the Next Generation Air Transportation System, will significantly reduce controller-to-pilot communications and controller workload, whilst improving safety. NextGen comprises complex integrated and interlinked programs, portfolios, systems, policies, and procedures. NextGen has modernized air traffic infrastructure in communications, navigation, surveillance, automation, and information management.

Aircraft self-separation is the capability of an aircraft maintaining acceptably safe separation from other aircraft without following instructions or guidance from a referee agent for this purpose, such as air traffic control. In its simplest forms, it can be described by the concept of see and avoid, in the case of human-piloted aircraft, or sense and avoid, in the case of non-human piloted aircraft. However, because of several factors such as weather, instrument flight rules and air traffic complexity, the self-separation capability involves other elements and aspects such as rules of the air, communication technologies and protocols, air traffic management and others.

References

  1. 1 2 3 Free Flight
  2. Final report of the RTCA Task Force 3, Free Flight Implementation. RTCA, Inc., Washington, DC, Oct 26, 1995 Archived 2008-04-08 at the Wayback Machine
  3. US 6314362 Method and system for an automated tool for en route traffic controllers