Frenulata

Last updated

Frenulata
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Clade: Pleistoannelida
Subclass: Sedentaria
Order: Sabellida
Family: Siboglinidae
Clade: Frenulata

Frenulata, "beard worms", is a clade of Siboglinidae, "tube worms". They are one of four lineages with numerous species. [1] [2] They may be the most basal clade in the family. [3] Despite being the first tube worms to be encountered and described, they remain the least studied group. This is because of their slender shape, they often get destroyed as a result of being caught as bycatch or poor preservation. They are found primarily in deep, muddy sediments, cold seeps, and anoxic firth sediments. [4] [5]

Contents

Anatomy

Frenulata are typically long and slender, they have been described as "thread-like". [5] They typically range from 0.1–3 mm in diameter. [6] Like other Siboglinidae, they have distinct segments: a plume, a vestimentum, and a trophosome. The vestimentum is used to retract the organism in and out of its tube. The trophosome is unique to tube worms. It was found to house bacterial symbiotes in Riftia. [7] Like other tube worms, they lack a digestive tract. [8] In order to survive, it holds endosymbiotic bacteria that supply the worm with nutrients. The bacteria nourishes the worm by oxidizing sulfur from its surrounding environment, with one methanotrophic exception being Siboglinum poseidoni. [5] The inorganic compounds are delivered to the trophosome by both the vascular and coelomic systems. Frenulata are unique in that they all have a mid-trunk girdle, spermatophores, sparse peg-like chaetae, and a tube with the posterior end open. [9] [10] The tube serves to provide structure for this soft-bodied animal as well as place the organism in an optimal position to obtain nutrients. [11]

Ecology

Frenulata are one of four clades of Siboglinidae, they are also the most diverse. [12] Despite that, the endosymbiotic bacterial diversity remains largely unknown due to their small size and difficult to reach habitats. They often serve as environmental engineers with their tubes, changing the composition of the sediment. [13] There is evidence that they are symbiote-flexible, meaning they can utilize different species of bacteria in order to best adapt to their environments. This however is still a contested theory with conflicting reports. [5] [11]

Related Research Articles

<span class="mw-page-title-main">Siboglinidae</span> Family of annelid worms

Siboglinidae is a family of polychaete annelid worms whose members made up the former phyla Pogonophora and Vestimentifera. The family is composed of around 100 species of vermiform creatures which live in thin tubes buried in sediment (Pogonophora) or in tubes attached to hard substratum (Vestimentifera) at ocean depths ranging from 100 to 10,000 m. They can also be found in association with hydrothermal vents, methane seeps, sunken plant material, and whale carcasses.

<span class="mw-page-title-main">Marine worm</span>

Any worm that lives in a marine environment is considered a marine worm. Marine worms are found in several different phyla, including the Platyhelminthes, Nematoda, Annelida, Chaetognatha, Hemichordata, and Phoronida. For a list of marine animals that have been called "sea worms", see sea worm.

<span class="mw-page-title-main">Polychaete</span> Class of annelid worms

Polychaeta is a paraphyletic class of generally marine annelid worms, commonly called bristle worms or polychaetes. Each body segment has a pair of fleshy protrusions called parapodia that bear many bristles, called chaetae, which are made of chitin. More than 10,000 species are described in this class. Common representatives include the lugworm and the sandworm or clam worm Alitta.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water. On the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<i>Riftia pachyptila</i> Giant tube worm (species of annelid)

Riftia pachyptila, commonly known as the giant tube worm and less commonly known as the giant beardworm, is a marine invertebrate in the phylum Annelida related to tube worms commonly found in the intertidal and pelagic zones. R. pachyptila lives on the floor of the Pacific Ocean near hydrothermal vents. The vents provide a natural ambient temperature in their environment ranging from 2 to 30 °C, and this organism can tolerate extremely high hydrogen sulfide levels. These worms can reach a length of 3 m, and their tubular bodies have a diameter of 4 cm (1.6 in).

<i>Osedax</i> Genus of annelid worms

Osedax is a genus of deep-sea siboglinid polychaetes, commonly called boneworms, zombie worms, or bone-eating worms. Osedax is Latin for "bone-eater". The name alludes to how the worms bore into the bones of whale carcasses to reach enclosed lipids, on which they rely for sustenance. They utilize specialized root tissues for bone-boring. It is possible that multiple species of Osedax reside in the same bone. Osedax worms are also known to feed on the collagen itself by making holes in the whale's skeletal structure. These holes can also serve as a form of protection from nearby predators.

<span class="mw-page-title-main">Eunicidae</span> Family of annelids

Eunicidae is a family of marine polychaetes. The family comprises marine annelids distributed in diverse benthic habitats across Oceania, Europe, South America, North America, Asia and Africa. The Eunicid anatomy typically consists of a pair of appendages near the mouth (mandibles) and complex sets of muscular structures on the head (maxillae) in an eversible pharynx. One of the most conspicuous of the eunicids is the giant, dark-purple, iridescent "Bobbit worm", a bristle worm found at low tide under boulders on southern Australian shores. Its robust, muscular body can be as long as 2 m. Eunicidae jaws are known from as far back as Ordovician sediments. Cultural tradition surrounds Palola worm reproductive cycles in the South Pacific Islands. Eunicidae are economically valuable as bait in both recreational and commercial fishing. Commercial bait-farming of Eunicidae can have adverse ecological impacts. Bait-farming can deplete worm and associated fauna population numbers, damage local intertidal environments and introduce alien species to local aquatic ecosystems.

<i>Lamellibrachia luymesi</i> Species of tube worms in the family Siboglinidae

Lamellibrachia luymesi is a species of tube worms in the family Siboglinidae. It lives at deep-sea cold seeps where hydrocarbons are leaking out of the seafloor. It is entirely reliant on internal, sulfide-oxidizing bacterial symbionts for its nutrition. These are located in a centrally located "trophosome".

<span class="mw-page-title-main">Trophosome</span> Organ containing endosymbionts

A trophosome is a highly vascularised organ found in some animals that houses symbiotic bacteria that provide food for their host. Trophosomes are contained by the coelom of the vestimentiferan tube worms and in the body of symbiotic flatworms of the genus Paracatenula.

<i>Olavius algarvensis</i> Species of annelid worm

Olavius algarvensis is a species of gutless oligochaete worm in the family Tubificidae which depends on symbiotic bacteria for its nutrition.

<i>Aeolosoma</i> Genus of annelids

Aeolosoma is a genus of minute annelid worms, variously attributed either to oligochaetes or polychaetes. Unlike most polychaetes, they reside in freshwater environments in various parts of the world.

<span class="mw-page-title-main">Annelid</span> Phylum of segmented worms

The annelids, also known as the segmented worms, are a large phylum, with over 22,000 extant species including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecologies – some in marine environments as distinct as tidal zones and hydrothermal vents, others in fresh water, and yet others in moist terrestrial environments.

<i>Paracatenula</i> Genus of flatworms

Paracatenula is a genus of millimeter sized free-living marine gutless catenulid flatworms.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<i>Tevnia</i> Genus of annelid worms

Tevnia is a genus of giant tube worm in the family Siboglinidae, with only one species, Tevnia jerichonana, living in a unique deep-sea environment. These deep sea marine species survive in environments like hydrothermal vents. These vents give off gas and toxic chemicals with the addition of having superheated temperatures. The giant tube worm prefers environments such as these despite the harsh temperature and toxic sea water.

<span class="mw-page-title-main">Olev Vinn</span> Estonian paleontologist (born 1971)

Olev Vinn is Estonian paleobiologist and paleontologist.

<i>Lamellibrachia satsuma</i> Species of tube worms in the family Siboglinidae

Lamellibrachia satsuma is a vestimentiferan tube worm that was discovered near a hydrothermal vent in Kagoshima Bay, Kagoshima at the depth of only 82 m (269 ft) the shallowest depth record for a vestimentiferan. Its symbiotic sulfur oxidizer bacteria have been characterised as ε-Proteobacteria and γ-Proteobacteria. Subspecies have been later found associated with cold seeps at Hatsushima in Sagami Bay and at the Daini Tenryu Knoll in the Nankai Trough with specimens obtained at up to 1,170 m (3,840 ft) depth.

<span class="mw-page-title-main">Sedentaria</span> Group of segmented worms

Sedentaria is a diverse clade of annelid worms. It is traditionally treated as a subclass of the paraphyletic class Polychaeta, but it is also a monophyletic group uniting several polychaetes and the monophyletic class Clitellata. It is the sister group of Errantia.

<span class="mw-page-title-main">Pleistoannelida</span> Clade of annelid worms

Pleistoannelida is a group of annelid worms that comprises the vast majority of the diversity in phylum Annelida. Discovered through phylogenetic analyses, it is the largest clade of annelids, comprised by the last common ancestor of the highly diverse sister groups Errantia and Sedentaria and all the descendants of that ancestor.

Oligobrachia is a genus in the family Siboglinidae, commonly known as beard worms. These beard worms are typically found at spreading centers, hydrothermal vents, and undersea volcanoes. The siboglinidae are annelids which can be found buried in sediments. Beard worms do not necessarily exist at one specific part of the world's oceans, however, they are spread out all over the ocean floors as long as the surrounding environment is similar; these are known as metapopulations. Most commonly, these organisms are found at the bottom of the ocean floor, whether it be at a depth of roughly 25 meters or hundreds of meters. Oligobrachia can typically be found near hydrothermal vents and methane seeps. An important characteristic of this genus is that it lacks a mouth and gut. Therefore, it relies on symbiotic bacteria to provide the host organism with energy to survive. The majority of oligobrachia that have been observed have been found in the Arctic and other high-latitude areas of the world's oceans.

References

  1. Southward, Eve C.; Schulze, Anja; Gardiner, Stephen L. (2005). "Pogonophora (Annelida): form and function". Hydrobiologia. 535–536 (1): 227–251. doi:10.1007/s10750-004-4401-6. ISSN   0018-8158. S2CID   2057727.
  2. Kubota, Norihiro; Kanemori, Masaaki; Sasayama, Yuichi; Aida, Masato; Fukumori, Yoshihiro (2007). "Identification of Endosymbionts in Oligobrachia mashikoi (Siboglinidae, Annelida)". Microbes and Environments. 22 (2): 136–144. doi:10.1264/jsme2.22.136. hdl: 2297/12422 . ISSN   1342-6311. S2CID   84629870.
  3. Hilário, Ana; Capa, María; Dahlgren, Thomas G.; Halanych, Kenneth M.; Little, Crispin T. S.; Thornhill, Daniel J.; Verna, Caroline; Glover, Adrian G. (2011). "New Perspectives on the Ecology and Evolution of Siboglinid Tubeworms". PLOS ONE. 6 (2): e16309. Bibcode:2011PLoSO...616309H. doi: 10.1371/journal.pone.0016309 . PMC   3038861 . PMID   21339826.
  4. Rodrigues, Clara F.; Hilário, Ana; Cunha, Marina R.; Weightman, Andrew J.; Webster, Gordon (2011-06-01). "Microbial diversity in Frenulata (Siboglinidae, Polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE Atlantic)". Antonie van Leeuwenhoek. 100 (1): 83–98. doi:10.1007/s10482-011-9567-0. ISSN   1572-9699. PMID   21359663. S2CID   10224623.
  5. 1 2 3 4 Meunier, Cédric; Andersen, Ann C.; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck (2010-01-01). "Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): First discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 155 (1): 41–48. doi:10.1016/j.cbpa.2009.09.010. ISSN   1095-6433. PMID   19770067.
  6. Pleijel, Fredrik; Dahlgren, Thomas G.; Rouse, Greg W. (2009). "Progress in systematics: from Siboglinidae to Pogonophora and Vestimentifera and back to Siboglinidae". Comptes Rendus Biologies. 332 (2–3): 140–148. doi:10.1016/j.crvi.2008.10.007. PMID   19281947.
  7. Katz, Sigrid; Klepal, Waltraud; Bright, Monika (2011). "The Osedax Trophosome: Organization and Ultrastructure". The Biological Bulletin. 220 (2): 128–139. doi:10.1086/BBLv220n2p128. ISSN   0006-3185. PMID   21551449. S2CID   20054373.
  8. Rouse, Greg W. (2001). "A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera". Zoological Journal of the Linnean Society. 132 (1): 55–80. doi: 10.1111/j.1096-3642.2001.tb02271.x . S2CID   85356739.
  9. Halanych, Kenneth M. (2005). "Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review". Hydrobiologia. 535–536 (1): 297–307. doi:10.1007/s10750-004-1437-6. ISSN   0018-8158. S2CID   16022909.
  10. Karaseva, N. P.; Rimskaya-Korsakova, N. N.; Ekimova, I. A.; Gantsevich, M. M.; Kokarev, V. N.; Kremnyov, S. V.; Simakov, M. I.; Udalov, A. A.; Vedenin, A. A.; Malakhov, V. V. (2021-11-05). "A new genus of frenulates (Annelida: Siboglinidae) from shallow waters of the Yenisey River estuary, Kara Sea". Invertebrate Systematics. 35 (8): 857–875. doi:10.1071/IS20075. ISSN   1445-5226. S2CID   244151933.
  11. 1 2 Lee, Dh; Kim, Jh; Lee, Ym; Jin, Yk; Paull, C; Kim, D; Shin, Kh (2019-10-10). "Chemosynthetic bacterial signatures in Frenulata tubeworm Oligobrachia sp. in an active mud volcano of the Canadian Beaufort Sea". Marine Ecology Progress Series. 628: 95–104. Bibcode:2019MEPS..628...95L. doi:10.3354/meps13084. ISSN   0171-8630. S2CID   201194903.
  12. Schulze, Anja (2003). "Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology". Zoologica Scripta. 32 (4): 321–342. doi:10.1046/j.1463-6409.2003.00119.x. ISSN   0300-3256. S2CID   84679292.
  13. Lee, Yung Mi; Noh, Hyun-Ju; Lee, Dong-Hun; Kim, Jung-Hyun; Jin, Young Keun; Paull, Charles (2019). "Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea". Polar Biology. 42 (12): 2305–2312. doi:10.1007/s00300-019-02599-w. ISSN   0722-4060. S2CID   207987760.