Frog battery

Last updated

Matteucci's frog battery, 1845 (top left); Aldini's frog battery, 1818 (bottom); apparatus for controlled exposure of gases to frog battery (top right). Matteucci's frog battery trimmed2.jpg
Matteucci's frog battery, 1845 (top left); Aldini's frog battery, 1818 (bottom); apparatus for controlled exposure of gases to frog battery (top right).

A frog battery is an electrochemical battery consisting of a number of dead frogs (or sometimes live ones), which form the cells of the battery connected in a series arrangement. It is a kind of biobattery. It was used in early scientific investigations of electricity and academic demonstrations.

Contents

The principle behind the battery is the injury potential created in a muscle when it is damaged, although this was not fully understood in the 18th and 19th centuries; the potential being caused incidentally due to the dissection of the frog's muscles.

The frog battery is an example of a class of biobatteries which can be made from any number of animals. The general term for an example of this class is the muscular pile.

The first well-known frog battery was created by Carlo Matteucci in 1845, but there had been others before him. Matteucci also created batteries out of other animals, and Giovanni Aldini created a battery from ox heads.

Background

In the early days of electrical research, a common method of detecting electric current was by means of a frog's leg galvanoscope. A good supply of live frogs was kept to hand by the researcher ready to have their legs prepared for the galvanoscope. Frogs were therefore a convenient material to use in other experiments. They were small, easily handled, the legs were especially sensitive to electric current, and they carried on responding longer than other animal candidates for this role. [1]

Preparation

Frog half-thighs in series Matteucci's frog battery detail.jpg
Frog half-thighs in series

It was usual to use the thighs of frogs for the battery construction. The legs of the frog were first skinned, then the lower leg was cut off at the knee joint and discarded. Damaging the muscle during this procedure would detract from the results. The thigh muscle was then cut in two transversely to produce two half-thighs. Only the lower, conical shaped piece was kept. The half-thighs were then laid on an insulator of varnished wood so arranged that the inside surface of one was in contact with the outside surface of the next, with the conical ends of the outside surface being pushed into the cavity of the cut surface. The ends of the pile were placed in cups of water sunk into the wood and formed the terminals of the battery. [2] [3]

The arrangement of inside surface connected to outside surface was on the basis of the incorrect theory that there was an electric current in muscles continually flowing from the inside to the outside. It is now known that the half-thighs were more successful at generating electricity because they had suffered the greatest injury to the muscle. This effect of increased electric potential due to injury is known as demarcation potential or injury potential. [4]

Other constructions could also be used. For instance the complete rear legs could be used with the sciatic nerves exposed so that the nerve of one frog could be connected to the feet of the next. Whole frogs too could be used. Although it was more time-consuming to prepare the thigh muscles, most experimenters preferred to do this since it gave better results. [5]

History

Bird's diagram of a frog battery, 1848 Frog battery from Bird.jpg
Bird's diagram of a frog battery, 1848

The first frog battery was constructed by Eusebio Valli in the 1790s with a chain of 10 frogs. Valli had difficulty understanding all of his own results; he followed Luigi Galvani in believing that animal electricity (or galvanic electricity) was a different phenomenon from metal-metal electricity (or voltaic electricity), even denying its existence. Alessandro Volta's theory was proved correct when he succeeded in constructing the voltaic pile without the use of any animal material. Because Valli found himself on the wrong side in this dispute, and refused to change his opinion despite the evidence, his work has become a bit of a backwater and his frog battery is little known and poorly documented. [6]

Aldini's 1803 ox-head battery Aldini's ox battery.jpg
Aldini's 1803 ox-head battery

Leopoldo Nobili built a frog battery in 1818 out of complete frog legs which he called a frog pile. He used this to investigate animal electricity but his experiments were strongly criticised by Volta who argued that the true source of electricity was dissimilar metals in the external circuit. According to Volta, fluids in the frog merely provided the electrolyte. [7]

The first well-known frog battery was constructed by Carlo Matteucci which was described in a paper presented to the Royal Society in 1845 by Michael Faraday on his behalf. It later also appeared in the popular medical student physics textbook Elements of Natural Philosophy by Golding Bird. Matteucci constructed his battery from a pile of 12 to 14 half-thighs of frogs. Despite the misguided theory behind the half-thigh battery, Matteucci's frog battery was nevertheless sufficiently powerful to decompose potassium iodide. Matteucci aimed with this apparatus to address Volta's criticism of Nobili by constructing a circuit, as far as possible, entirely out of biological material and hence prove the existence of animal electricity. Matteucci also studied the effects vacuum, various gases, and poisons had on the frog battery, concluding that in many cases its operation was not affected even when the substance would be toxic or lethal to the living animal. [8]

Frogs were not the only creatures to be press-ganged into serving as battery components. In 1803, Giovanni Aldini demonstrated that electricity could be obtained from an ox head from a freshly killed animal. A frog galvanoscope connected between the ox's tongue and ear showed a reaction when the circuit was completed through the experimenter's own body. A greater reaction was obtained when Aldini joined two or three heads together into a battery. Later, in the 1840s, Matteucci also created eel batteries, pigeon batteries and rabbit batteries. Further, he created a battery out of living pigeons by connecting a wound made on the breast of one pigeon to the body of the next. Matteucci states that this design was based on a pre-existing battery of living frogs. [2] [9]

Related Research Articles

<span class="mw-page-title-main">Alessandro Volta</span> Italian physicist and chemist (1745–1827)

Alessandro Giuseppe Antonio Anastasio Volta was an Italian physicist and chemist who was a pioneer of electricity and power and is credited as the inventor of the electric battery and the discoverer of methane. He invented the voltaic pile in 1799, and reported the results of his experiments in 1800 in a two-part letter to the president of the Royal Society. With this invention Volta proved that electricity could be generated chemically and debunked the prevalent theory that electricity was generated solely by living beings. Volta's invention sparked a great amount of scientific excitement and led others to conduct similar experiments, which eventually led to the development of the field of electrochemistry.

<span class="mw-page-title-main">Electricity</span> Phenomena related to electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

<span class="mw-page-title-main">Giovanni Aldini</span> Italian physician and physicist (1762–1834)

Giovanni Aldini was an Italian physician and physicist born in Bologna. He was a brother of the statesman Count Antonio Aldini (1756–1826). He graduated in physics at University of Bologna in 1782.

<span class="mw-page-title-main">Voltaic pile</span> First electrical battery that could continuously provide an electric current to a circuit

The voltaic pile was the first electrical battery that could continuously provide an electric current to a circuit. It was invented by Italian chemist Alessandro Volta, who published his experiments in 1799. Its invention can be traced back to an argument between Volta and Luigi Galvani, Volta's fellow Italian scientist who had conducted experiments on frogs' legs. The voltaic pile then enabled a rapid series of other discoveries including the electrical decomposition (electrolysis) of water into oxygen and hydrogen by William Nicholson and Anthony Carlisle (1800) and the discovery or isolation of the chemical elements sodium (1807), potassium (1807), calcium (1808), boron (1808), barium (1808), strontium (1808), and magnesium (1808) by Humphry Davy.

Timeline of electromagnetism and classical optics lists, within the history of electromagnetism, the associated theories, technology, and events.

<span class="mw-page-title-main">Galvanism</span> Early study of the electric properties of animal tissue

Galvanism is a term invented by the late 18th-century physicist and chemist Alessandro Volta to refer to the generation of electric current by chemical action. The term also came to refer to the discoveries of its namesake, Luigi Galvani, specifically the generation of electric current within biological organisms and the contraction/convulsion of biological muscle tissue upon contact with electric current. While Volta theorized and later demonstrated the phenomenon of his "Galvanism" to be replicable with otherwise inert materials, Galvani thought his discovery to be a confirmation of the existence of "animal electricity," a vital force which gave life to organic matter.

<span class="mw-page-title-main">Luigi Galvani</span> Italian physician, physicist, and philosopher

Luigi Galvani was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs twitched when struck by an electrical spark. This was an early study of bioelectricity, following experiments by John Walsh and Hugh Williamson.

<span class="mw-page-title-main">Emil du Bois-Reymond</span> German physician and physiologist (1818–1896)

Emil Heinrich du Bois-Reymond was a German physiologist, the co-discoverer of nerve action potential, and the developer of experimental electrophysiology. His lectures on science and culture earned him great esteem during the latter half of the 19th century.

<span class="mw-page-title-main">Galvanic cell</span> Electrochemical device

A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous oxidation–reduction reactions. A common apparatus generally consists of two different metals, each immersed in separate beakers containing their respective metal ions in solution that are connected by a salt bridge or separated by a porous membrane.

<span class="mw-page-title-main">Electric ray</span> Order of cartilaginous fishes

The electric rays are a group of rays, flattened cartilaginous fish with enlarged pectoral fins, composing the order Torpediniformes. They are known for being capable of producing an electric discharge, ranging from 8 to 220 volts, depending on species, used to stun prey and for defense. There are 69 species in four families.

<span class="mw-page-title-main">Carlo Matteucci</span> Italian politician and physicist (1811–1868)

Carlo Matteucci was an Italian physicist and neurophysiologist who was a pioneer in the study of bioelectricity.

<span class="mw-page-title-main">Gian Domenico Romagnosi</span> Italian philosopher, economist and jurist (1761–1835)

Gian Domenico Romagnosi was an Italian philosopher, economist and jurist.

Balloonist theory was a theory in early neuroscience that attempted to explain muscle movement by asserting that muscles contract by inflating with air or fluid. The Greek physician Galen believed that muscles contracted due to a fluid flowing into them, and for 1500 years afterward, it was believed that nerves were hollow and that they carried fluid. René Descartes, who was interested in hydraulics and used fluid pressure to explain various aspects of physiology such as the reflex arc, proposed that "animal spirits" flowed into muscle and were responsible for their contraction. In the model, which Descartes used to explain reflexes, the spirits would flow from the ventricles of the brain, through the nerves, and to the muscles to animate the latter.

Electrochemistry, a branch of chemistry, went through several changes during its evolution from early principles related to magnets in the early 16th and 17th centuries, to complex theories involving conductivity, electric charge and mathematical methods. The term electrochemistry was used to describe electrical phenomena in the late 19th and 20th centuries. In recent decades, electrochemistry has become an area of current research, including research in batteries and fuel cells, preventing corrosion of metals, the use of electrochemical cells to remove refractory organics and similar contaminants in wastewater electrocoagulation and improving techniques in refining chemicals with electrolysis and electrophoresis.

<span class="mw-page-title-main">History of the battery</span> History of electricity source

Batteries provided the primary source of electricity before the development of electric generators and electrical grids around the end of the 19th century. Successive improvements in battery technology facilitated major electrical advances, from early scientific studies to the rise of telegraphs and telephones, eventually leading to portable computers, mobile phones, electric cars, and many other electrical devices.

<span class="mw-page-title-main">Golding Bird</span> British medical doctor

Golding Bird was a British medical doctor and a Fellow of the Royal College of Physicians. He became a great authority on kidney diseases and published a comprehensive paper on urinary deposits in 1844. He was also notable for his work in related sciences, especially the medical uses of electricity and electrochemistry. From 1836, he lectured at Guy's Hospital, a well-known teaching hospital in London and now part of King's College London, and published a popular textbook on science for medical students called Elements of Natural Philosophy.

The frog galvanoscope was a sensitive electrical instrument used to detect voltage in the late 18th and 19th centuries. It consists of a skinned frog's leg with electrical connections to a nerve. The instrument was invented by Luigi Galvani and improved by Carlo Matteucci.

<span class="mw-page-title-main">Franklin's electrostatic machine</span> Experimental device

Franklin's electrostatic machine is a high-voltage static electricity-generating device used by Benjamin Franklin in the mid-18th century for research into electrical phenomena. Its key components are a glass globe which turned on an axis via a crank, a cloth pad in contact with the spinning globe, a set of metal needles to conduct away the charge developed on the globe by its friction with the pad, and a Leyden jar – a high-voltage capacitor – to accumulate the charge. Franklin's experiments with the machine eventually led to new theories about electricity and inventing the lightning rod.

The history of bioelectricity dates back to ancient Egypt, where the shocks delivered by the electric catfish were used medicinally.

References

  1. Bird (1849), pp.28-29
    Valli, p.22
  2. 1 2 Longet and Matteucci, "Traité des phénomènes electro-physiologiques des animaux", "Rapport entre le sens du courant electrique et les contractions musculaires dues et ce courant" The Medico-chirurgical Review, vol.46, p.311, April 1845.
  3. Matteucci (1848), p.391
    Rutter, pp.110-113
  4. Clarke & Jacyna, p.199
    Hellman, p.32
    Kipnis, pp.144-145
  5. Rutter, p.112
  6. Bird (1848), p.344
    *Valli, p.155, Experiment 122 uses 10 frogs
    Kipnis, pp.144-145
  7. Clarke & Jacyna, p.199
    Clarke & O'Malley, p.186
    Hellman, p.31
  8. Bird (1848), pp.344-345
    Hellman, p.32
    Matteucci (1845), pp.284-285
  9. Bird (1848), p.341-342
    Matteucci (1848), p.391

Bibliography