Front-end engineering

Last updated

Front-End Engineering (FEE), or Front-End Engineering Design (FEED), is an engineering design approach used to control project expenses and thoroughly plan a project before a fix bid quote is submitted. [1] It may also be referred to as Pre-project planning (PPP), front-end loading (FEL), feasibility analysis, or early project planning.

Contents

Overview

FEED is basic engineering, which comes after the Conceptual design or Feasibility study. FEE design focuses the technical requirements as well as rough investment cost for the project. FEED can be divided into separate packages covering different portions of the project. The FEED package is used as the basis for bidding for Engineering, Procurement and Construction contracts (EPC, EPCI, etc) and is used as the design basis (or Basis of Design).

A good FEED will reflect all of the client's project-specific requirements and avoid significant changes during the execution phase. FEED contracts usually take around 1 year to complete for larger-sized projects. During the FEED phase, there is close communication between Project Owners and Operators and the Engineering Contractor to work up the project-specific requirements.

Front-End Engineering focuses on technical requirements and identifying main costs for a proposed project. [2] It is used to establish a price for the execution phase of the project and evaluate potential risks. It is typically followed by Detailed Design (or Detailed Engineering). The amount of time invested in Front-End Engineering is higher than a traditional quote, because project specifications are thoroughly extracted, and the following typically developed in detail:

  • Defined civil, mechanical and chemical engineering
  • HAZOP, safety and ergonomic studies
  • 2D & 3D preliminary models
  • Equipment layout and installation plan
  • Engineering design package development
  • Major equipment list
  • Automation strategy

Traditionally, all of these documents would be developed in detail during a design review after a quote has been agreed to. A company using FEED will develop these materials before submitting a quote.

Front-end engineering is typically used by design/build engineering firms. These firms may operate in various industries, including:

FEE Methodology

FEE Methodology: [3] FEE is a way of looking at a project before completing detailed design. There is no set way to conduct a Front-End Engineering study. Generally, FEE requires an engineer or a group of engineers to thoroughly and logically consider a proposed project. Example considerations may include:

Feed also includes the outline and stages of Expansions to happen in future, although the timeline is not specifically stated for such expansions. In such cases, the plot area allocated for expansion at certain stage is usually not transgressed.

Related Research Articles

<span class="mw-page-title-main">Acceptance testing</span> Test to determine if the requirements of a specification or contract are met

In engineering and its various subdisciplines, acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. It may involve chemical tests, physical tests, or performance tests.

Project management is the process of leading the work of a team to achieve all project goals within the given constraints. This information is usually described in project documentation, created at the beginning of the development process. The primary constraints are scope, time, and budget. The secondary challenge is to optimize the allocation of necessary inputs and apply them to meet pre-defined objectives.

<span class="mw-page-title-main">Work breakdown structure</span> A deliverable-orientated breakdown of a project into smaller components.

A work-breakdown structure (WBS) in project management and systems engineering is a deliverable-oriented breakdown of a project into smaller components. A work breakdown structure is a key project management element that organizes the team's work into manageable sections. The Project Management Body of Knowledge defines the work-breakdown structure as a "hierarchical decomposition of the total scope of work to be carried out by the project team to accomplish the project objectives and create the required deliverables."

The waterfall model is a breakdown of project activities into linear sequential phases, meaning they are passed down onto each other, where each phase depends on the deliverables of the previous one and corresponds to a specialization of tasks. The approach is typical for certain areas of engineering design. In software development, it tends to be among the less iterative and flexible approaches, as progress flows in largely one direction through the phases of conception, initiation, analysis, design, construction, testing, deployment and maintenance. The waterfall model is the earliest SDLC approach that was used in software development.

In business and engineering, product development or new product development covers the complete process of bringing a new product to market, renewing an existing product and introducing a product in a new market. A central aspect of NPD is product design, along with various business considerations. New product development is described broadly as the transformation of a market opportunity into a product available for sale. The products developed by an organisation provide the means for it to generate income. For many technology-intensive firms their approach is based on exploiting technological innovation in a rapidly changing market.

<span class="mw-page-title-main">Systems development life cycle</span> Systems engineering terms

In systems engineering, information systems and software engineering, the systems development life cycle (SDLC), also referred to as the application development life cycle, is a process for planning, creating, testing, and deploying an information system. The SDLC concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.

<span class="mw-page-title-main">Product lifecycle</span> Duration of processing of products from inception, to engineering, design & manufacture

In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its inception through the engineering, design and manufacture, as well as the service and disposal of manufactured products. PLM integrates people, data, processes, and business systems and provides a product information backbone for companies and their extended enterprises.

Purchasing is the process a business or organization uses to acquire goods or services to accomplish its goals. Although there are several organizations that attempt to set standards in the purchasing process, processes can vary greatly between organizations.

Construction management (CM) is a professional service that uses specialized, project management techniques and software to oversee the planning, design, construction and closeout of a project. The purpose of construction management is to control the quality of a project's scope, time / delivery and cost—sometimes referred to as a project management triangle or "triple constraints." CM is compatible with all project delivery systems, including design-bid-build, design-build, CM At-Risk and Public Private Partnerships. Professional construction managers may be hired for large to jumbo-scale, high budget undertakings, called capital projects.

Integrated logistic support (ILS) is a technology in the system engineering to lower a product life cycle cost and decrease demand for logistics by the maintenance system optimization to ease the product support. Although originally developed for military purposes, it is also widely used in commercial customer service organisations.

Process analytical technology (PAT) has been defined by the United States Food and Drug Administration (FDA) as a mechanism to design, analyze, and control pharmaceutical manufacturing processes through the measurement of critical process parameters (CPP) which affect the critical quality attributes (CQA).

A cost estimate is the approximation of the cost of a program, project, or operation. The cost estimate is the product of the cost estimating process. The cost estimate has a single total value and may have identifiable component values.

The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative – parts of the process often need to be repeated many times before another can be entered – though the part(s) that get iterated and the number of such cycles in any given project may vary.

Materials management is a core supply chain function and includes supply chain planning and supply chain execution capabilities. Specifically, materials management is the capability firms use to plan total material requirements. The material requirements are communicated to procurement and other functions for sourcing. Materials management is also responsible for determining the amount of material to be deployed at each stocking location across the supply chain, establishing material replenishment plans, determining inventory levels to hold for each type of inventory, and communicating information regarding material needs throughout the extended supply chain.

Front-end loading (FEL), also referred to as pre-project planning (PPP), , feasibility analysis, conceptual planning, programming/schematic design and early project planning, is the process for conceptual development of projects in processing industries such as upstream oil and gas, petrochemical, natural gas refining, extractive metallurgy, waste-to-energy, and pharmaceuticals. This involves developing sufficient strategic information with which owners can address risk and make decisions to commit resources in order to maximize the potential for success.

Building commissioning (Cx) is an integrated, systematic process to ensure, through documented verification, that all building systems perform interactively according to the "Design Intent". The commissioning process establishes and documents the "Owner's Project Requirements (OPR)" criteria for system function, performance expectations, maintainability; verify and document compliance with these criteria throughout all phases of the project. Commissioning procedures require a collaborative team effort and 'should' begin during the pre-design or planning phase of the project, continue through the design and construction phases, initial occupancy phase, training of operations and maintenance (O&M) staff, and into occupancy.

Manufacturing execution systems (MES) are computerized systems used in manufacturing to track and document the transformation of raw materials to finished goods. MES provides information that helps manufacturing decision-makers understand how current conditions on the plant floor can be optimized to improve production output. MES works as real-time monitoring system to enable the control of multiple elements of the production process.

<span class="mw-page-title-main">Project commissioning</span> Process of assuring all systems and components are operational

Project commissioning is the process of ensuring that all systems and components of a building or industrial plant are designed, installed, tested, operated, and maintained according to the owner's or final client's operational requirements. A commissioning process may be applied not only to new projects but also to existing units and systems subject to expansion, renovation or revamping.

The following outline is provided as an overview of and topical guide to project management:

<span class="mw-page-title-main">Packaging machinery</span>

Packaging machinery is used throughout all packaging operations, involving primary packages to distribution packs. This includes many packaging processes: fabrication, cleaning, filling, sealing, combining, labeling, overwrapping, palletizing.

References

  1. "FEED - Front End Engineering Design | Definition | EPC Engineer". Archived from the original on 2013-12-03. Retrieved 2013-11-26.
  2. "Industrial Automation | Automation Design & Integration Company".
  3. http://www.asee.org/documents/sections/middle-atlantic/fall-2010/01-Teaching-Front-End-Engineering-Design-FEED.pdf [ bare URL PDF ]