Fudge factor

Last updated

A fudge factor is an ad hoc quantity or element introduced into a calculation, formula or model in order to make it fit observations or expectations. Also known as a correction coefficient, which is defined by

Contents

Examples include Einstein's cosmological constant, dark energy, the initial proposals of dark matter and inflation. [1]

Examples in science

Some quantities in scientific theory are set arbitrarily according to measured results rather than by calculation (for example, the Planck constant). However, in the case of these fundamental constants, their arbitrariness is usually explicit. To suggest that other calculations may include a "fudge factor" may suggest that the calculation has been somehow tampered with to make results give a misleadingly good match to experimental data.

Cosmological constant

In theoretical physics, when Albert Einstein originally tried to produce a general theory of relativity, he found that the theory seemed to predict the gravitational collapse of the universe: it seemed that the universe should be collapsing, and to produce a model in which the universe was static and stable (which seemed to Einstein at the time to be the "proper" result), he introduced an expansionist variable (called the cosmological constant), whose sole purpose was to cancel out the cumulative effects of gravitation. He later called this, "the biggest blunder of my life". [2]

See also

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

<span class="mw-page-title-main">Theory of everything</span> Hypothetical physical concept

A theory of everything (TOE), final theory, ultimate theory, unified field theory, or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics.

<span class="mw-page-title-main">Cosmological constant</span> Constant representing stress–energy density of the vacuum

In cosmology, the cosmological constant, alternatively called Einstein's cosmological constant, is a coefficient that Albert Einstein initially added to his field equations of general relativity. He later removed it; however, much later it was revived to express the energy density of space, or vacuum energy, that arises in quantum mechanics. It is closely associated with the concept of dark energy.

<span class="mw-page-title-main">Ultimate fate of the universe</span> Theories about the end of the universe

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

<span class="mw-page-title-main">Big Crunch</span> Theoretical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Freeze is more likely. Nonetheless, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.

Vacuum energy is an underlying background energy that exists in space throughout the entire universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.

In physics, a dimensionless physical constant is a physical constant that is dimensionless, i.e. a pure number having no units attached and having a numerical value that is independent of whatever system of units may be used.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) that are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) that are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

<span class="mw-page-title-main">Dark energy</span> Energy driving the accelerated expansion of the universe

In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy dominates the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10−30 g/cm3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

<span class="mw-page-title-main">Cosmological constant problem</span> Concept in cosmology

In cosmology, the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density and the much larger theoretical value of zero-point energy suggested by quantum field theory.

<span class="mw-page-title-main">Entropic gravity</span> Theory in modern physics that describes gravity as an entropic force

Entropic gravity, also known as emergent gravity, is a theory in modern physics that describes gravity as an entropic force—a force with macro-scale homogeneity but which is subject to quantum-level disorder—and not a fundamental interaction. The theory, based on string theory, black hole physics, and quantum information theory, describes gravity as an emergent phenomenon that springs from the quantum entanglement of small bits of spacetime information. As such, entropic gravity is said to abide by the second law of thermodynamics under which the entropy of a physical system tends to increase over time.

Albert Einstein conducted several unsuccessful investigations. These pertain to quantum mechanics, superconductivity, and his details on his own theory of relativity.

<span class="mw-page-title-main">Black hole cosmology</span> Cosmological model in which the observable universe is the interior of a black hole

A black hole cosmology is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Kumar Pathria, and concurrently by mathematician I. J. Good.

In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: c, G, ħ, and kB. Expressing one of these physical constants in terms of Planck units yields a numerical value of 1. They are a system of natural units, defined using fundamental properties of nature rather than properties of a chosen prototype object. Originally proposed in 1899 by German physicist Max Planck, they are relevant in research on unified theories such as quantum gravity.

Lucas Lombriser is a Swiss National Science Foundation Professor at the Department of Theoretical Physics, University of Geneva. His research is in Theoretical Cosmology, Dark Energy, and Alternative Theories of Gravity. In 2020 and 2021 Lombriser proposed that the Hubble tension and other discrepancies between cosmological measurements imply significant evidence that we are living in a Hubble Bubble of 250 million light years in diameter which is 20% less dense than the cosmic average and lowers the locally measured cosmic microwave background temperature over its cosmic average. Previously, in 2019, he has proposed a solution to the cosmological constant problem from arguing that Newton's constant varies globally. In 2015 and 2016, Lombriser predicted the measurement of the gravitational wave speed with a neutron star merger and that this would rule out alternative theories of gravity as the cause of the late-time accelerated expansion of our Universe, a prediction that proved true with GW170817. Lombriser is a member of the Romansh-speaking minority in Switzerland.

<span class="mw-page-title-main">Problems with Einstein's general theory of relativity</span>

Although Albert Einstein's general theory of relativity, contains some of the most powerful arguments and concepts ever presented in the history of gravitational theory, some aspects of Einstein's attempted implementation of a general theory have been found to be problematic, with some of the major criticisms coming from Einstein himself.

References

  1. Donald Goldsmith (1997), Einstein's Greatest Blunder?: The Cosmological Constant and Other Fudge Factors in the Physics of the Universe, Harvard University Press, ISBN   9780674242425
  2. Kenneth William Ford (2004), The Quantum World: Quantum Physics for Everyone, Harvard University Press, ISBN   9780674037144