Fukui function

Last updated

In computational chemistry, the Fukui function or frontier function is a function that describes the electron density in a frontier orbital, as a result of a small change in the total number of electrons. [1] The condensed Fukui function or condensed reactivity indicator is the same idea, but applied to an atom within a molecule, rather than a point in three-dimensional space.

Contents

The Fukui function allows one to predict, using density functional theory, where the most electrophilic and nucleophilic sites of a molecule are. [2]

History and background

The Fukui function is named after Kenichi Fukui, who investigated the frontier orbitals described by the function, specifically the HOMO and LUMO. [3] Fukui functions are related in part to the frontier molecular orbital theory (also known as the Fukui theory of reactivity and selection, also developed by Kenichi Fukui) which discusses how nucleophiles attack the HOMO while at the same time placing their surplus electrons into the LUMO. [4]

Calculation

Most chemical reactions in general involve a change in electron density of the molecules involved. The Fukui function quantifies this change in electron density at a given position when the number of electrons have been changed. This function is as follows:

where is the electron density. The Fukui function itself has two finite versions of this change which can be defined by the following two functions. The form of the function will depend on whether or not an electron was removed from or added to the molecule. The Fukui function for the addition of an electron to a molecule is as follows:

.

The next function represents the Fukui function in terms of the removal of an electron from the molecule:

.

The function represents the initial part of a nucleophilic reaction. The , on the other hand, represents the initial part of an electrophilic reaction. The reaction will therefore then take place where the can be found to have a large value. Solving for either Fukui function would result in a representation of the molecule's electron density for either electrophilicity or nucleophilicity. [5]

Applications

The Fukui function can be utilized in determining the reactivities of molecules towards other molecules. For example, the difference in the Fukui function before and after a CO molecule bonds with a nanoparticle surface can be used to interpret the nanoparticle's reactivity not only with CO but in other core-shell transition metal nanoparticles. [6]

The Fukui function has been shown to be related to the local softness of a system. This property has allowed it to be used for biological studies involving ligand docking, active site detection, and protein folding. [7]

Related Research Articles

In chemistry, a nucleophile is a chemical species that forms bonds with electrophiles by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases.

In quantum chemistry, electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.

Kenichi Fukui Japanese chemist

Kenichi Fukui was a Japanese chemist, known as the first Asian person to be awarded the Nobel Prize in Chemistry.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

A hypervalent molecule (the phenomenon is sometimes colloquially known as expanded octet) is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride (PCl5), sulfur hexafluoride (SF6), chlorine trifluoride (ClF3), the chlorite (ClO
2
) ion, and the triiodide (I
3
) ion are examples of hypervalent molecules.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

Electronic correlation is the interaction between electrons in the electronic structure of a quantum system. The correlation energy is a measure of how much the movement of one electron is influenced by the presence of all other electrons.

Time-dependent density-functional theory (TDDFT) is a quantum mechanical theory used in physics and chemistry to investigate the properties and dynamics of many-body systems in the presence of time-dependent potentials, such as electric or magnetic fields. The effect of such fields on molecules and solids can be studied with TDDFT to extract features like excitation energies, frequency-dependent response properties, and photoabsorption spectra.

Woodward–Hoffmann rules

The Woodward–Hoffmann rules, devised by Robert Burns Woodward and Roald Hoffmann, are a set of rules used to rationalize or predict certain aspects of the stereochemistry and activation energy of pericyclic reactions, an important class of reactions in organic chemistry. The rules are best understood in terms of the concept of the conservation of orbital symmetry using orbital correlation diagrams. The Woodward–Hoffmann rules are a consequence of the changes in electronic structure that occur during a pericyclic reaction and are predicated on the phasing of the interacting molecular orbitals. They are applicable to all classes of pericyclic reactions, including (1) electrocyclizations, (2) cycloadditions, (3) sigmatropic reactions, (4) group transfer reactions, (5) ene reactions, (6) cheletropic reactions, and (7) dyotropic reactions. Due to their elegance, simplicity, and generality, the Woodward–Hoffmann rules are credited with first exemplifying the power of molecular orbital theory to experimental chemists.

Spartan (chemistry software)

Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ab initio models, density functional models, post-Hartree–Fock models, and thermochemical recipes including G3(MP2) and T1. Quantum chemistry calculations in Spartan are powered by Q-Chem.

The Hammett equation in organic chemistry describes a linear free-energy relationship relating reaction rates and equilibrium constants for many reactions involving benzoic acid derivatives with meta- and para-substituents to each other with just two parameters: a substituent constant and a reaction constant. This equation was developed and published by Louis Plack Hammett in 1937 as a follow-up to qualitative observations in a 1935 publication.

Bürgi–Dunitz angle

The Bürgi–Dunitz angle is one of two angles that fully define the geometry of "attack" of a nucleophile on a trigonal unsaturated center in a molecule, originally the carbonyl center in an organic ketone, but now extending to aldehyde, ester, and amide carbonyls, and to alkenes (olefins) as well. The angle was named after crystallographers Hans-Beat Bürgi and Jack D. Dunitz, its first senior investigators.

Prilezhaev reaction

The Prilezhaev reaction, also known as the Prileschajew reaction or Prilezhaev epoxidation, is the chemical reaction of an alkene with a peroxy acid to form epoxides. It is named after Nikolai Prilezhaev, who first reported this reaction in 1909. A widely used peroxy acid for this reaction is meta-chloroperoxybenzoic acid (m-CPBA), due to its stability and good solubility in most organic solvents. An illustrative example is the epoxidation of trans-2-butene with m-CPBA to give trans-2,3-epoxybutane:

Electron localization function

In quantum chemistry, the electron localization function (ELF) is a measure of the likelihood of finding an electron in the neighborhood space of a reference electron located at a given point and with the same spin. Physically, this measures the extent of spatial localization of the reference electron and provides a method for the mapping of electron pair probability in multielectronic systems.

Flippin–Lodge angle

The Flippin–Lodge angle is one of two angles used by organic and biological chemists studying the relationship between a molecule's chemical structure and ways that it reacts, for reactions involving "attack" of an electron-rich reacting species, the nucleophile, on an electron-poor reacting species, the electrophile. Specifically, the angles—the Bürgi–Dunitz, , and the Flippin–Lodge, —describe the "trajectory" or "angle of attack" of the nucleophile as it approaches the electrophile, in particular when the latter is planar in shape. This is called a nucleophilic addition reaction and it plays a central role in the biological chemistry taking place in many biosyntheses in nature, and is a central "tool" in the reaction toolkit of modern organic chemistry, e.g., to construct new molecules such as pharmaceuticals. Theory and use of these angles falls into the areas of synthetic and physical organic chemistry, which deals with chemical structure and reaction mechanism, and within a sub-specialty called structure correlation.

In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems. Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal, an anion, another molecule and even another π system. Non-covalent interactions involving π systems are pivotal to biological events such as protein-ligand recognition.

Oxocarbenium

An oxocarbeniumion is a chemical species characterized by a central sp2-hybridized carbon, an oxygen substituent, and an overall positive charge that is delocalized between the central carbon and oxygen atoms. A oxocarbenium ion is represented by two limiting resonance structures, one in the form of a carbenium ion with the positive charge on carbon and the other in the form of an oxonium species with the formal charge on oxygen. As a resonance hybrid, the true structure falls between the two. Compared to neutral carbonyl compounds like ketones or esters, the carbenium ion form is a larger contributor to the structure. They are common reactive intermediates in the hydrolysis of glycosidic bonds, and are a commonly used strategy for chemical glycosylation. These ions have since been proposed as reactive intermediates in a wide range of chemical transformations, and have been utilized in the total synthesis of several natural products. In addition, they commonly appear in mechanisms of enzyme-catalyzed biosynthesis and hydrolysis of carbohydrates in nature. Anthocyanins are natural flavylium dyes, which are stabilized oxocarbenium compounds. Anthocyanins are responsible for the colors of a wide variety of common flowers such as pansies and edible plants such as eggplant and blueberry.

In chemistry, frontier molecular orbital theory is an application of MO theory describing HOMO/LUMO interactions.

In the theory of chemical reactivity, the Klopman-Salem equation describes the energetic change that occurs when two species approach each other in the course of a reaction and begin to interact, as their associated molecular orbitals begin to overlap with each other and atoms bearing partial charges begin to experience attractive or repulsive electrostatic forces. First described independently by Gilles Klopman and Lionel Salem in 1968, this relationship provides a mathematical basis for the key assumptions of frontier molecular orbital theory and hard soft acid base (HSAB) theory. Conceptually, it highlights the importance of considering both electrostatic interactions and orbital interactions when rationalizing the selectivity or reactivity of a chemical process.

References

  1. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " frontier function ". doi : 10.1351/goldbook.FT07039
  2. Ayers, P. W.; Yang, W.; Bartolotti, L. J. (2010). "18. Fukui Function". In Chatteraj, P. K. (ed.). Chemical Reactivity Theory: A DFT View (reprint). CRC Press. ISBN   9781420065435.
  3. Lewars, E.G. (2010). Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. p.503. ISBN   9789048138623.
  4. C. J. Cramer, Essentials of computational chemistry: theories and models, (Chichester, John Wiley, 2002)
  5. F. Jensen, Introduction to Computational Chemistry, (Wiley, Chichester, 1999) p.492.
  6. Allison, T.C., Tong, Y.J. (2012). Application of the condensed Fukui function to predict reactivity in core–shell transition metal nanoparticles. Electrochimica Acta, Volume 101, page 334-340.
  7. Farver, J., Merz, K.M. (2010). The Utility of the HSAB Principle via the Fukui Function in Biological Systems. JCTC, vol. 6, p.548-559.