Functional-theoretic algebra

Last updated

Any vector space can be made into a unital associative algebra, called functional-theoretic algebra, by defining products in terms of two linear functionals. In general, it is a non-commutative algebra. It becomes commutative when the two functionals are the same.

Contents

Definition

Let AF be a vector space over a field F, and let L1 and L2 be two linear functionals on AF with the property L1(e) = L2(e) = 1F for some e in AF. We define multiplication of two elements x, y in AF by

It can be verified that the above multiplication is associative and that e is the identity of this multiplication.

So, AF forms an associative algebra with unit e and is called a functional theoretic algebra(FTA).

Suppose the two linear functionals L1 and L2 are the same, say L. Then AF becomes a commutative algebra with multiplication defined by

Example

X is a nonempty set and F a field. FX is the set of functions from X to F.

If f, g are in FX, x in X and α in F, then define

and

With addition and scalar multiplication defined as this, FX is a vector space over F.

Now, fix two elements a, b in X and define a function e from X to F by e(x) = 1F for all x in X.

Define L1 and L2 from FX to F by L1(f) = f(a) and L2(f) = f(b).

Then L1 and L2 are two linear functionals on FX such that L1(e)= L2(e)= 1F For f, g in FX define

Then FX becomes a non-commutative function algebra with the function e as the identity of multiplication.

Note that

FTA of Curves in the Complex Plane

Let C denote the field of Complex numbers. A continuous function γ from the closed interval [0, 1] of real numbers to the field C is called a curve. The complex numbers γ(0) and γ(1) are, respectively, the initial and terminal points of the curve. If they coincide, the curve is called a loop. The set V[0, 1] of all the curves is a vector space over C.

We can make this vector space of curves into an algebra by defining multiplication as above. Choosing we have for α,β in C[0, 1],

Then, V[0, 1] is a non-commutative algebra with e as the unity.

We illustrate this with an example.

Example of f-Product of Curves

Let us take (1) the line segment joining the points (1, 0) and (0, 1) and (2) the unit circle with center at the origin. As curves in V[0, 1], their equations can be obtained as

Since the circle g is a loop. The line segment f starts from : and ends at

Now, we get two f-products given by

and

See the Figure. Curve2.jpg

Observe that showing that multiplication is non-commutative. Also both the products starts from

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes as input a function and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In abstract algebra, a semiring is an algebraic structure. It is a generalization of a ring, dropping the requirement that each element must have an additive inverse. At the same time, it is a generalization of bounded distributive lattices.

In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem.

<span class="mw-page-title-main">Functional (mathematics)</span> Types of mappings in mathematics

In mathematics, a functional is a certain type of function. The exact definition of the term varies depending on the subfield.

<span class="mw-page-title-main">Strophoid</span> Geometric curve constructed from another curve and two points

In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

<span class="mw-page-title-main">Real-valued function</span> Mathematical function that takes real values

In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.

We take the functional theoretic algebra C[0, 1] of curves. For each loop γ at 1, and each positive integer n, we define a curve called n-curve. The n-curves are interesting in two ways.

  1. Their f-products, sums and differences give rise to many beautiful curves.
  2. Using the n-curves, we can define a transformation of curves, called n-curving.

In mathematics, the oscillator representation is a projective unitary representation of the symplectic group, first investigated by Irving Segal, David Shale, and André Weil. A natural extension of the representation leads to a semigroup of contraction operators, introduced as the oscillator semigroup by Roger Howe in 1988. The semigroup had previously been studied by other mathematicians and physicists, most notably Felix Berezin in the 1960s. The simplest example in one dimension is given by SU(1,1). It acts as Möbius transformations on the extended complex plane, leaving the unit circle invariant. In that case the oscillator representation is a unitary representation of a double cover of SU(1,1) and the oscillator semigroup corresponds to a representation by contraction operators of the semigroup in SL(2,C) corresponding to Möbius transformations that take the unit disk into itself.

This is a glossary for the terminology in a mathematical field of functional analysis.

References

Book of Beautiful Curves

Certain Number Theoretic Episodes in Algebra