Functional response

Last updated

A functional response in ecology is the intake rate of a consumer as a function of food density (the amount of food available in a given ecotope). It is associated with the numerical response, which is the reproduction rate of a consumer as a function of food density. Following C. S. Holling, functional responses are generally classified into three types, which are called Holling's type I, II, and III. [1]

Contents

Types I, II, and III functional responses FunctionalResponsesGraph.svg
Types I, II, and III functional responses

Type I

The type I functional response assumes a linear increase in intake rate with food density, either for all food densities, or only for food densities up to a maximum, beyond which the intake rate is constant. The linear increase assumes that the time needed by the consumer to process a food item is negligible, or that consuming food does not interfere with searching for food. A functional response of type I is used in the Lotka–Volterra predator–prey model. It was the first kind of functional response described and is also the simplest of the three functional responses currently detailed.

Type II

The type II functional response is characterized by a decelerating intake rate, which follows from the assumption that the consumer is limited by its capacity to process food. Type II functional response is often modeled by a rectangular hyperbola, for instance as by Holling's disc equation, [2] which assumes that processing of food and searching for food are mutually exclusive behaviors. The equation is

Wolves killing Caribou, by Arthur Robert Harding, 1909. If the caribou density increases whilst the number of wolves is held constant, the number of caribou killed per wolf first increases, then levels off. Wolves killing caribou.png
Wolves killing Caribou, by Arthur Robert Harding, 1909. If the caribou density increases whilst the number of wolves is held constant, the number of caribou killed per wolf first increases, then levels off.

where f denotes intake rate and R denotes food (or resource) density. The rate at which the consumer encounters food items per unit of food density is called the attack rate, a. The average time spent on processing a food item is called the handling time, h. Similar equations are the Monod equation for the growth of microorganisms and the Michaelis–Menten equation for the rate of enzymatic reactions. [4]


In an example with wolves and caribou, as the number of caribou increases while holding wolves constant, the number of caribou kills increases and then levels off. This is because the proportion of caribou killed per wolf decreases as caribou density increases. The higher the density of caribou, the smaller the proportion of caribou killed per wolf. Explained slightly differently, at very high caribou densities, wolves need very little time to find prey and spend almost all their time handling prey and very little time searching. Wolves are then satiated and the total number of caribou kills reaches a plateau. [3]

Type III

The type III functional response is similar to type II in that at high levels of prey density, saturation occurs. At low prey density levels, the graphical relationship of number of prey consumed and the density of the prey population is a superlinearly increasing function of prey consumed by predators: [5]

This accelerating function was originally formulated in analogy with of the kinetics of an enzyme with two binding sites for k = 2. [4] More generally, if a prey type is only accepted after every k encounters and rejected the k-1 times in between, which mimicks learning, the general form above is found. [5]

Learning time is defined as the natural improvement of a predator's searching and attacking efficiency or the natural improvement in their handling efficiency as prey density increases. Imagine a prey density so small that the chance of a predator encountering that prey is extremely low. Because the predator finds prey so infrequently, it has not had enough experience to develop the best ways to capture and subdue that species of prey. Holling identified this mechanism in shrews and deer mice feeding on sawflies. At low numbers of sawfly cocoons per acre, deer mice especially experienced exponential growth in terms of the number of cocoons consumed per individual as the density of cocoons increased. The characteristic saturation point of the type III functional response was also observed in the deer mice. At a certain density of cocoons per acre, the consumption rate of the deer mice reached a saturation amount as the cocoon density continued to increase. [2]

Prey switching involves two or more prey species and one predator species. When all prey species are at equal densities, the predator will indiscriminately select between prey species. However, if the density of one of the prey species decreases, then the predator will start selecting the other, more common prey species with a higher frequency because if it can increase the efficiency which with it captures the more abundant prey through learning. Murdoch demonstrated this effect with guppy preying on tubificids and fruit flies. As fruit fly numbers decreased guppies switched from feeding on the fruit flies on the water's surface to feeding on the more abundant tubificids along the bed. [6]

If predators learn while foraging, but do not reject prey before they accept one, the functional response becomes a function of the density of all prey types. This describes predators that feed on multiple prey and dynamically switch from one prey type to another. This behaviour can lead to either a type II or a type III functional response. If the density of one prey type is approximately constant, as is often the case in experiments, a type III functional response is found. When the prey densities change in approximate proportion to each other, as is the case in most natural situations, a type II functional response is typically found. This explains why the type III functional response has been found in many experiments in which prey densities are artificially manipulated, but is rare in nature. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Herbivore</span> Organism that eats mostly or exclusively plant material

A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthparts adapted to rasping or grinding. Horses and other herbivores have wide flat teeth that are adapted to grinding grass, tree bark, and other tough plant material.

<span class="mw-page-title-main">Mutualism (biology)</span> Mutually beneficial interaction between species

Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction, one that can come from a parasitic interaction. Prominent examples include most vascular plants engaged in mutualistic interactions with mycorrhizae, flowering plants being pollinated by animals, vascular plants being dispersed by animals, and corals with zooxanthellae, among many others. Mutualism can be contrasted with interspecific competition, in which each species experiences reduced fitness, and exploitation, or parasitism, in which one species benefits at the expense of the other.

<span class="mw-page-title-main">Predation</span> Biological interaction where a predator kills and eats a prey organism

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

<span class="mw-page-title-main">White-tailed deer</span> Species of hooved mammal

The white-tailed deer, also known commonly as the whitetail and the Virginia deer, is a medium-sized species of deer native to North America, Central America, and South America as far south as Peru and Bolivia, where it predominately inhabits high mountain terrains of the Andes. It has also been introduced to New Zealand, all the Greater Antilles in the Caribbean, and some countries in Europe, such as the Czech Republic, Finland, France, Germany, Romania and Serbia. In the Americas, it is the most widely distributed wild ungulate.

<span class="mw-page-title-main">Population ecology</span> Study of the dynamics of species populations and how these populations interact with the environment

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.

<span class="mw-page-title-main">Soil food web</span>

The soil food web is the community of organisms living all or part of their lives in the soil. It describes a complex living system in the soil and how it interacts with the environment, plants, and animals.

<span class="mw-page-title-main">Apex predator</span> Predator at the top of a food chain

An apex predator, also known as a top predator, is a predator at the top of a food chain, without natural predators of its own.

<span class="mw-page-title-main">Intraspecific competition</span> Species members compete for resources

Intraspecific competition is an interaction in population ecology, whereby members of the same species compete for limited resources. This leads to a reduction in fitness for both individuals, but the more fit individual survives and is able to reproduce. By contrast, interspecific competition occurs when members of different species compete for a shared resource. Members of the same species have rather similar requirements for resources, whereas different species have a smaller contested resource overlap, resulting in intraspecific competition generally being a stronger force than interspecific competition.

<span class="mw-page-title-main">Optimal foraging theory</span> Behavioral ecology model

Optimal foraging theory (OFT) is a behavioral ecology model that helps predict how an animal behaves when searching for food. Although obtaining food provides the animal with energy, searching for and capturing the food require both energy and time. To maximize fitness, an animal adopts a foraging strategy that provides the most benefit (energy) for the lowest cost, maximizing the net energy gained. OFT helps predict the best strategy that an animal can use to achieve this goal.

The paradox of enrichment is a term from population ecology coined by Michael Rosenzweig in 1971. He described an effect in six predator–prey models where increasing the food available to the prey caused the predator's population to destabilize. A common example is that if the food supply of a prey such as a rabbit is overabundant, its population will grow unbounded and cause the predator population to grow unsustainably large. That may result in a crash in the population of the predators and possibly lead to local eradication or even species extinction.

Irruptive growth is a growth pattern over time, defined by a sudden rapid growth in the population of an organism. Irruptive growth is studied in population ecology. Population cycles often display irruptive growth, but with a predictable pattern subsequent decline. It is a phenomenon typically associated with r-strategists.

Trophic cascades are powerful indirect interactions that can control entire ecosystems, occurring when a trophic level in a food web is suppressed. For example, a top-down cascade will occur if predators are effective enough in predation to reduce the abundance, or alter the behavior of their prey, thereby releasing the next lower trophic level from predation.

<span class="mw-page-title-main">Predator satiation</span> Anti-predator adaption

Predator satiation is an anti-predator adaptation in which prey briefly occur at high population densities, reducing the probability of an individual organism being eaten. When predators are flooded with potential prey, they can consume only a certain amount, so by occurring at high densities prey benefit from a safety in numbers effect. This strategy has evolved in a diverse range of prey, including notably many species of plants, insects, and fish. Predator satiation can be considered a type of refuge from predators.

Prey switching is frequency-dependent predation, where the predator preferentially consumes the most common type of prey. The phenomenon has also been described as apostatic selection, however the two terms are generally used to describe different parts of the same phenomenon. Apostatic selection has been used by authors looking at the differences between different genetic morphs. In comparison, prey switching has been used when describing the choice between different species.

The paradox of the pesticides is a paradox that states that applying pesticide to a pest may end up increasing the abundance of the pest if the pesticide upsets natural predator–prey dynamics in the ecosystem.

The numerical response in ecology is the change in predator density as a function of change in prey density. The term numerical response was coined by M. E. Solomon in 1949. It is associated with the functional response, which is the change in predator's rate of prey consumption with change in prey density. As Holling notes, total predation can be expressed as a combination of functional and numerical response. The numerical response has two mechanisms: the demographic response and the aggregational response. The numerical response is not necessarily proportional to the change in prey density, usually resulting in a time lag between prey and predator populations. For example, there is often a scarcity of predators when the prey population is increasing.

<span class="mw-page-title-main">Pursuit predation</span> Hunting strategy by some predators

Pursuit predation is a form of predation in which predators actively give chase to their prey, either solitarily or as a group. It is an alternate predation strategy to ambush predation — pursuit predators rely on superior speed, endurance and/or teamwork to seize the prey, while ambush predators use concealment, luring, exploiting of surroundings and the element of surprise to capture the prey. While the two patterns of predation are not mutually exclusive, morphological differences in an organism's body plan can create an evolutionary bias favoring either type of predation.

<span class="mw-page-title-main">Hunting success</span> Likelihood of a hunt ending in success

In ecology, hunting success is the proportion of hunts initiated by a predatory organism that end in success. Hunting success is determined by a number of factors such as the features of the predator, timing, different age classes, conditions for hunting, experience, and physical capabilities. Predators selectivity target certain categories of prey, in particular prey of a certain size. Prey animals that are in poor health are targeted and this contributes to the predator's hunting success. Different predation strategies can also contribute to hunting success, for example, hunting in groups gives predators an advantage over a solitary predator, and pack hunters like lions can kill animals that are too powerful for a solitary predator to overcome, like a megaherbivore.

References

  1. Holling, C. S. (May 1959). "The components of predation as revealed by a study of small-mammal predation of the European pine sawfly". The Canadian Entomologist. 91 (5): 293–320. doi:10.4039/Ent91293-5. S2CID   53474917.
  2. 1 2 Holling, C. S. (July 1959). "Some characteristics of simple types of predation and parasitism". The Canadian Entomologist. 91 (7): 385–98. doi:10.4039/Ent91385-7. S2CID   83738084.
  3. 1 2 Dale, Bruce W.; Adams, Layne G.; Bowyer, R. Terry (1994). "Functional Response of Wolves Preying on Barren-Ground Caribou in a Multiple-Prey Ecosystem". Journal of Animal Ecology. 63 (3): 644–652. Bibcode:1994JAnEc..63..644D. doi:10.2307/5230. JSTOR   5230.
  4. 1 2 Real, Leslie A. (1977). "The Kinetics of Functional Response". American Naturalist. 111 (978): 289–300. doi:10.1086/283161. JSTOR   2460064. S2CID   83705539.
  5. 1 2 Dawes, J.H.P.; Souza, M.O. (21 June 2013). "A derivation of Holling's type I, II and III functional responses in predator–prey systems". Journal of Theoretical Biology. 327: 11–22. Bibcode:2013JThBi.327...11D. doi:10.1016/j.jtbi.2013.02.017. PMID   23500600 . Retrieved 15 December 2022.
  6. Murdoch, William W. (1977). "Stabilizing effects of spatial heterogeneity in predator-prey systems". Theoretical Population Biology. 11 (2): 252–73. doi:10.1016/0040-5809(77)90028-4. PMID   867289.
  7. van Leeuwen, E.; Jansen, V. A. A.; Bright, P. W. (2007). "How population dynamics shape the functional response in a one-predator–two-prey system". Ecology. 88 (6): 1571–1581. Bibcode:2007Ecol...88.1571L. doi:10.1890/06-1335. PMID   17601148.