In materials science Functionally Graded Materials (FGMs) may be characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material. The materials can be designed for specific function and applications. Various approaches based on the bulk (particulate processing), preform processing, layer processing and melt processing are used to fabricate the functionally graded materials.
The concept of FGM was first considered in Japan in 1984 during a space plane project, where a combination of materials used would serve the purpose of a thermal barrier capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 K across a 10 mm section. [1] In recent years this concept has become more popular in Europe, particularly in Germany. A transregional collaborative research center (SFB Transregio) is funded since 2006 in order to exploit the potential of grading monomaterials, such as steel, aluminium and polypropylen, by using thermomechanically coupled manufacturing processes. [2]
FGMs can vary in either composition and structure, for example, porosity, or both to produce the resulting gradient. The gradient can be categorized as either continuous or discontinuous, which exhibits a stepwise gradient.
There are several examples of FGMs in nature, including bamboo and bone, which alter their microstructure to create a material property gradient. [3] In biological materials, the gradients can be produced through changes in the chemical composition, structure, interfaces, and through the presence of gradients spanning multiple length scales. Specifically within the variation of chemical compositions, the manipulation of the mineralization, the presence of inorganic ions and biomolecules, and the level of hydration have all been known to cause gradients in plants and animals. [4]
The basic structural units of FGMs are elements or material ingredients represented by maxel. The term maxel was introduced in 2005 by Rajeev Dwivedi and Radovan Kovacevic at Research Center for Advanced Manufacturing (RCAM). [5] The attributes of maxel include the location and volume fraction of individual material components.
A maxel is also used in the context of the additive manufacturing processes (such as stereolithography, selective laser sintering, fused deposition modeling, etc.) to describe a physical voxel (a portmanteau of the words 'volume' and 'element'), which defines the build resolution of either a rapid prototyping or rapid manufacturing process, or the resolution of a design produced by such fabrication means.
The transition between the two materials can be approximated by through either a power-law or exponential law relation:
Power Law: where is the Young's modulus at the surface of the material, z is the depth from surface, and k is a non-dimensional exponent ().
Exponential Law: where indicates a hard surface and indicates soft surface. [6]
There are many areas of application for FGM. The concept is to make a composite material by varying the microstructure from one material to another material with a specific gradient. This enables the material to have the best of both materials. If it is for thermal, or corrosive resistance or malleability and toughness both strengths of the material may be used to avoid corrosion, fatigue, fracture and stress corrosion cracking.
There is a myriad of possible applications and industries interested in FGMs. They span from defense, looking at protective armor, to biomedical, investigating implants, to optoelectronics and energy.[ citation needed ]
The aircraft and aerospace industry and the computer circuit industry are very interested in the possibility of materials that can withstand very high thermal gradients. [7] This is normally achieved by using a ceramic layer connected with a metallic layer.
The Air Vehicles Directorate has conducted a Quasi-static bending test results of functionally graded titanium/titanium boride test specimens which can be seen below. [8] The test correlated to the finite element analysis (FEA) using a quadrilateral mesh with each element having its own structural and thermal properties.
Advanced Materials and Processes Strategic Research Programme (AMPSRA) have done analysis on producing a thermal barrier coating using Zr02 and NiCoCrAlY. Their results have proved successful but no results of the analytical model are published.
The rendition of the term that relates to the additive fabrication processes has its origins at the RMRG (Rapid Manufacturing Research Group) at Loughborough University in the United Kingdom. The term forms a part of a descriptive taxonomy of terms relating directly to various particulars relating to the additive CAD-CAM manufacturing processes, originally established as a part of the research conducted by architect Thomas Modeen into the application of the aforementioned techniques in the context of architecture.
Gradient of elastic modulus essentially changes the fracture toughness of adhesive contacts. [9]
Additionally, there has been an increased focus on how to apply FGMs to biomedical applications, specifically dental and orthopedic implants. For example, bone is an FGM that exhibits a change in elasticity and other mechanical properties between the cortical and cancellous bone. It logically follows that FGMs for orthopedic implants would be ideal for mimicking the performance of bone. FGMs for biomedical applications have the potential benefit of preventing stress concentrations that could lead to biomechanical failure and improving biocompatibility and biomechanical stability. [10] FGMs in relation to orthopedic implants are particularly important as the common materials used (titanium, stainless steel, etc.) are stiffer and thus pose a risk of creating abnormal physiological conditions that alter the stress concentration at the interface between the implant and the bone. If the implant is too stiff it risks causing bone resorption, while a flexible implant can cause stability and the bone-implant interface. Numerous FEM simulations have been carried out to understand the possible FGM and mechanical gradients that could be implemented into different orthopedic implants, as the gradients and mechanical properties are highly geometry specific. [11]
An example of a FGM for use in orthopedic implants is carbon fiber reinforcement polymer matrix (CRFP) with yttria-stabilized zirconia (YSZ). Varying the amount of YSZ present as a filler in the material, resulted in a flexural strength gradation ratio of 1.95. This high gradation ratio and overall high flexibility shows promise as being a supportive material in bone implants. [12] There are quite a few FGMs being explored using hydroxyapatite (HA) due to its osteoconductivity which assists with osseointegration of implants. However, HA exhibits lower fracture strength and toughness compared to bone, which requires it to be used in conjunction with other materials in implants. One study combined HA with alumina and zirconia via a spark plasma process to create a FGM that shows a mechanical gradient as well as good cellular adhesion and proliferation. [13]
Numerical methods have been developed for modelling the mechanical response of FGMs, with the finite element method being the most popular one. Initially, the variation of material properties was introduced by means of rows (or columns) of homogeneous elements, leading to a discontinuous step-type variation in the mechanical properties. [14] Later, Santare and Lambros [15] developed functionally graded finite elements, where the mechanical property variation takes place at the element level. Martínez-Pañeda and Gallego extended this approach to commercial finite element software. [16] Contact properties of FGM can be simulated using the Boundary Element Method (which can be applied both to non-adhesive and adhesive contacts). [17] Molecular dynamics simulation has also been implemented to study functionally graded materials. M. Islam [18] studied the mechanical and vibrational properties of functionally graded Cu-Ni nanowires using molecular dynamics simulation.
Mechanics of functionally graded material structures was considered by many authors. [19] [20] [21] [22] However, recently a new micro-mechanical model is developed to calculate the effective elastic Young modulus for graphene-reinforced plates composite. The model considers the average dimensions of the graphene nanoplates, weight fraction, and the graphene/ matrix ratio in the Representative Volume Element. The dynamic behavior of this functionally graded polymer-based composite reinforced with graphene fillers is crucial for engineering applications. [23]
{{cite web}}
: CS1 maint: numeric names: authors list (link){{cite web}}
: CS1 maint: archived copy as title (link)A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.
Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of biophysics.
A composite material is a material which is produced from two or more constituent materials. These constituent materials have notably dissimilar chemical or physical properties and are merged to create a material with properties unlike the individual elements. Within the finished structure, the individual elements remain separate and distinct, distinguishing composites from mixtures and solid solutions. Composite materials with more than one distinct layer are called composite laminates.
Thermoelectric materials show the thermoelectric effect in a strong or convenient form.
In solid mechanics, a stress concentration is a location in an object where the stress is significantly greater than the surrounding region. Stress concentrations occur when there are irregularities in the geometry or material of a structural component that cause an interruption to the flow of stress. This arises from such details as holes, grooves, notches and fillets. Stress concentrations may also occur from accidental damage such as nicks and scratches.
Bioglass 45S5 or calcium sodium phosphosilicate, is a bioactive glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5. Typical applications of Bioglass 45S5 include: bone grafting biomaterials, repair of periodontal defects, cranial and maxillofacial repair, wound care, blood loss control, stimulation of vascular regeneration, and nerve repair.
Natural fibers or natural fibres are fibers that are produced by geological processes, or from the bodies of plants or animals. They can be used as a component of composite materials, where the orientation of fibers impacts the properties. Natural fibers can also be matted into sheets to make paper or felt.
Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.
Probabilistic design is a discipline within engineering design. It deals primarily with the consideration and minimization of the effects of random variability upon the performance of an engineering system during the design phase. Typically, these effects studied and optimized are related to quality and reliability. It differs from the classical approach to design by assuming a small probability of failure instead of using the safety factor. Probabilistic design is used in a variety of different applications to assess the likelihood of failure. Disciplines which extensively use probabilistic design principles include product design, quality control, systems engineering, machine design, civil engineering and manufacturing.
Graphene nanoribbons are strips of graphene with width less than 100 nm. Graphene ribbons were introduced as a theoretical model by Mitsutaka Fujita and coauthors to examine the edge and nanoscale size effect in graphene.
Bioceramics and bioglasses are ceramic materials that are biocompatible. Bioceramics are an important subset of biomaterials. Bioceramics range in biocompatibility from the ceramic oxides, which are inert in the body, to the other extreme of resorbable materials, which are eventually replaced by the body after they have assisted repair. Bioceramics are used in many types of medical procedures. Bioceramics are typically used as rigid materials in surgical implants, though some bioceramics are flexible. The ceramic materials used are not the same as porcelain type ceramic materials. Rather, bioceramics are closely related to either the body's own materials or are extremely durable metal oxides.
Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.
Octacalcium phosphate (sometimes referred to as OCP) is a form of calcium phosphate with formula Ca8H2(PO4)6·5H2O. OCP may be a precursor to tooth enamel, dentine, and bones. OCP is a precursor of hydroxyapatite (HA), an inorganic biomineral that is important in bone growth. OCP has garnered lots of attention due to its inherent biocompatibility. While OCP exhibits good properties in terms of bone growth, very stringent synthesis requirements make it difficult for mass productions, but nevertheless has shown promise not only in-vitro, but also in in-vivo clinical case studies.
Biomaterials are materials that are used in contact with biological systems. Biocompatibility and applicability of surface modification with current uses of metallic, polymeric and ceramic biomaterials allow alteration of properties to enhance performance in a biological environment while retaining bulk properties of the desired device.
Bioresorbablemetals are metals or their alloys that degrade safely within the body. The primary metals in this category are magnesium-based and iron-based alloys, although recently zinc has also been investigated. Currently, the primary uses of bioresorbable metals are as stents for blood vessels and other internal ducts.
Robocasting is an additive manufacturing technique analogous to Direct Ink Writing and other extrusion-based 3D-printing techniques in which a filament of a paste-like material is extruded from a small nozzle while the nozzle is moved across a platform. The object is thus built by printing the required shape layer by layer. The technique was first developed in the United States in 1996 as a method to allow geometrically complex ceramic green bodies to be produced by additive manufacturing. In robocasting, a 3D CAD model is divided up into layers in a similar manner to other additive manufacturing techniques. The material is then extruded through a small nozzle as the nozzle's position is controlled, drawing out the shape of each layer of the CAD model. The material exits the nozzle in a liquid-like state but retains its shape immediately, exploiting the rheological property of shear thinning. It is distinct from fused deposition modelling as it does not rely on the solidification or drying to retain its shape after extrusion.
Isaac Elishakoff is a Georgian engineer who is Distinguished Research Professor in the Ocean and Mechanical Engineering Department in the Florida Atlantic University, Boca Raton, Florida. He is a figure in the area of mechanics. He has made several contributions in the areas of random vibrations, solid mechanics of composite material, semi-inverse problems of vibrations and stability, functionally graded material structures, and nanotechnology.
Titanium foams exhibit high specific strength, high energy absorption, excellent corrosion resistance and biocompatibility. These materials are ideally suited for applications within the aerospace industry. An inherent resistance to corrosion allows the foam to be a desirable candidate for various filtering applications. Further, titanium's physiological inertness makes its porous form a promising candidate for biomedical implantation devices. The largest advantage in fabricating titanium foams is that the mechanical and functional properties can be adjusted through manufacturing manipulations that vary porosity and cell morphology. The high appeal of titanium foams is directly correlated to a multi-industry demand for advancement in this technology.
Magd Abdel Wahab is a Belgian academic, researcher, author and Imam of Islam. He is full professor and chair of applied mechanics at Ghent University, Belgium, where he is also the Head of Finite Element Modelling Research Group of Laboratory Soete.