G-factor (physics)

Last updated

A g-factor (also called g value) is a dimensionless quantity that characterizes the magnetic moment and angular momentum of an atom, a particle or the nucleus. It is the ratio of the magnetic moment (or, equivalently, the gyromagnetic ratio) of a particle to that expected of a classical particle of the same charge and angular momentum. In nuclear physics, the nuclear magneton replaces the classically expected magnetic moment (or gyromagnetic ratio) in the definition. The two definitions coincide for the proton.

Contents

Definition

Dirac particle

The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

Baryon or nucleus

Protons, neutrons, nuclei, and other composite baryonic particles have magnetic moments arising from their spin (both the spin and magnetic moment may be zero, in which case the g-factor is undefined). Conventionally, the associated g-factors are defined using the nuclear magneton, and thus implicitly using the proton's mass rather than the particle's mass as for a Dirac particle. The formula used under this convention is where μ is the magnetic moment of the nucleon or nucleus resulting from its spin, g is the effective g-factor, I is its spin angular momentum, μN is the nuclear magneton, e is the elementary charge, and mp is the proton rest mass.

Calculation

Electron g-factors

There are three magnetic moments associated with an electron: one from its spin angular momentum, one from its orbital angular momentum, and one from its total angular momentum (the quantum-mechanical sum of those two components). Corresponding to these three moments are three different g-factors:

Electron spin g-factor

The most known of these is the electron spin g-factor (more often called simply the electron g-factor), ge, defined by where μs is the magnetic moment resulting from the spin of an electron, S is its spin angular momentum, and μB = /2me is the Bohr magneton. In atomic physics, the electron spin g-factor is often defined as the absolute value of ge:

The z-component of the magnetic moment then becomes where are the eigenvalues of the Sz operator, meaning ms can take on values . [2]

The value gs is roughly equal to 2.002319 and is known to extraordinary precision – one part in 1013. [3] The reason it is not precisely two is explained by quantum electrodynamics calculation of the anomalous magnetic dipole moment. [4] The spin g-factor is related to spin frequency for a free electron in a magnetic field of a cyclotron:

Electron orbital g-factor

Secondly, the electron orbital g-factor, gL, is defined by where μL is the magnetic moment resulting from the orbital angular momentum of an electron, L is its orbital angular momentum, and μB is the Bohr magneton. For an infinite-mass nucleus, the value of gL is exactly equal to one, by a quantum-mechanical argument analogous to the derivation of the classical magnetogyric ratio. For an electron in an orbital with a magnetic quantum number ml, the z-component of the orbital magnetic moment is which, since gL = 1, is −μBml

For a finite-mass nucleus, there is an effective g value [5] where M is the ratio of the nuclear mass to the electron mass.

Total angular momentum (Landé) g-factor

Thirdly, the Landé g-factor , gJ, is defined by where μJ is the total magnetic moment resulting from both spin and orbital angular momentum of an electron, J = L + S is its total angular momentum, and μB is the Bohr magneton. The value of gJ is related to gL and gs by a quantum-mechanical argument; see the article Landé g-factor. μJ and J vectors are not collinear, so only their magnitudes can be compared.

Muon g-factor

If supersymmetry is realized in nature, there will be corrections to g-2 of the muon due to loop diagrams involving the new particles. Amongst the leading corrections are those depicted here: a neutralino and a smuon loop, and a chargino and a muon sneutrino loop. This represents an example of "beyond the Standard Model" physics that might contribute to g-2. The muon g-2.svg
If supersymmetry is realized in nature, there will be corrections to g−2 of the muon due to loop diagrams involving the new particles. Amongst the leading corrections are those depicted here: a neutralino and a smuon loop, and a chargino and a muon sneutrino loop. This represents an example of "beyond the Standard Model" physics that might contribute to g–2.

The muon, like the electron, has a g-factor associated with its spin, given by the equation where μ is the magnetic moment resulting from the muon's spin, S is the spin angular momentum, and mμ is the muon mass.

That the muon g-factor is not quite the same as the electron g-factor is mostly explained by quantum electrodynamics and its calculation of the anomalous magnetic dipole moment. Almost all of the small difference between the two values (99.96% of it) is due to a well-understood lack of heavy-particle diagrams contributing to the probability for emission of a photon representing the magnetic dipole field, which are present for muons, but not electrons, in QED theory. These are entirely a result of the mass difference between the particles.

However, not all of the difference between the g-factors for electrons and muons is exactly explained by the Standard Model. The muon g-factor can, in theory, be affected by physics beyond the Standard Model, so it has been measured very precisely, in particular at the Brookhaven National Laboratory. In the E821 collaboration final report in November 2006, the experimental measured value is 2.0023318416(13), compared to the theoretical prediction of 2.00233183620(86). [6] This is a difference of 3.4 standard deviations, suggesting that beyond-the-Standard-Model physics may be a contributory factor. The Brookhaven muon storage ring was transported to Fermilab where the Muon g–2 experiment used it to make more precise measurements of muon g-factor. On April 7, 2021, the Fermilab Muon g−2 collaboration presented and published a new measurement of the muon magnetic anomaly. [7] When the Brookhaven and Fermilab measurements are combined, the new world average differs from the theory prediction by 4.2 standard deviations.

Measured g-factor values

ParticleSymbolg-factorRelative standard uncertainty
electronge−2.00231930436092(36)1.8×10−13 [8]
muongμ−2.00233184123(82)4.1×10−10 [9]
protongp+5.5856946893(16)2.9×10−10 [10]
neutrongn−3.82608552(90)2.4×10−7 [11]
CODATA recommended g-factor values

The electron g-factor is one of the most precisely measured values in physics. [3]

See also

Notes and references

  1. Povh, Bogdan; Rith, Klaus; Scholz, Christoph; Zetsche, Frank (2013-04-17). Particles and Nuclei. Springer. ISBN   978-3-662-05023-1.
  2. Griffiths, David J.; Schroeter, Darrell F. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge: Cambridge University Press. ISBN   978-1-107-18963-8.
  3. 1 2 Fan, X.; Myers, T. G.; Sukra, B. A. D.; Gabrielse, G. (2023-02-13). "Measurement of the Electron Magnetic Moment". Physical Review Letters. 130 (7): 071801. arXiv: 2209.13084 . Bibcode:2023PhRvL.130g1801F. doi:10.1103/PhysRevLett.130.071801. PMID   36867820.
  4. Brodsky, S; Franke, V; Hiller, J; McCartor, G; Paston, S; Prokhvatilov, E (2004). "A nonperturbative calculation of the electron's magnetic moment". Nuclear Physics B . 703 (1–2): 333–362. arXiv: hep-ph/0406325 . Bibcode:2004NuPhB.703..333B. doi:10.1016/j.nuclphysb.2004.10.027. S2CID   118978489.
  5. Lamb, Willis E. (1952-01-15). "Fine Structure of the Hydrogen Atom. III". Physical Review. 85 (2): 259–276. Bibcode:1952PhRv...85..259L. doi:10.1103/PhysRev.85.259. PMID   17775407.
  6. Hagiwara, K.; Martin, A. D.; Nomura, Daisuke; Teubner, T. (2007). "Improved predictions for g−2 of the muon and αQED(M2
    Z
    )". Physics Letters B. 649 (2–3): 173–179. arXiv: hep-ph/0611102 . Bibcode:2007PhLB..649..173H. doi:10.1016/j.physletb.2007.04.012. S2CID   118565052.
  7. B. Abi; et al. (Muon g−2 collaboration) (7 April 2021). "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm". Physical Review Letters. 126 (14): 141801. arXiv: 2104.03281 . Bibcode:2021PhRvL.126n1801A. doi:10.1103/PhysRevLett.126.141801. ISSN   0031-9007. PMID   33891447. S2CID   233169085.
  8. "2022 CODATA Value: electron g factor". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  9. "2022 CODATA Value: muon g factor". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  10. "2022 CODATA Value: proton g factor". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.
  11. "2022 CODATA Value: neutron g factor". The NIST Reference on Constants, Units, and Uncertainty. NIST. May 2024. Retrieved 2024-05-18.

Further reading

Related Research Articles

In atomic physics, the Bohr magneton is a physical constant and the natural unit for expressing the magnetic moment of an electron caused by its orbital or spin angular momentum. In SI units, the Bohr magneton is defined as and in the Gaussian CGS units as where

The nuclear magneton is a physical constant of magnetic moment, defined in SI units by: and in Gaussian CGS units by: where:

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

In physics and chemistry, the spin quantum number is a quantum number that describes the intrinsic angular momentum of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons.

In physics, the gyromagnetic ratio of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1).

In physics, the Landé g-factor is a particular example of a g-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Landé, who first described it in 1921.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

The nuclear magnetic moment is the magnetic moment of an atomic nucleus and arises from the spin of the protons and neutrons. It is mainly a magnetic dipole moment; the quadrupole moment does cause some small shifts in the hyperfine structure as well. All nuclei that have nonzero spin also have a nonzero magnetic moment and vice versa, although the connection between the two quantities is not straightforward or easy to calculate.

In quantum mechanics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two effects: the apparent magnetic field seen from the electron perspective due to special relativity and the magnetic moment of the electron associated with its intrinsic spin due to quantum mechanics.

In physics, Larmor precession is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

The Einstein–de Haas effect is a physical phenomenon in which a change in the magnetic moment of a free body causes this body to rotate. The effect is a consequence of the conservation of angular momentum. It is strong enough to be observable in ferromagnetic materials. The experimental observation and accurate measurement of the effect demonstrated that the phenomenon of magnetization is caused by the alignment (polarization) of the angular momenta of the electrons in the material along the axis of magnetization. These measurements also allow the separation of the two contributions to the magnetization: that which is associated with the spin and with the orbital motion of the electrons. The effect also demonstrated the close relation between the notions of angular momentum in classical and in quantum physics.

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.

In physics, magnetization dynamics is the branch of solid-state physics that describes the evolution of the magnetization of a material.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

<span class="mw-page-title-main">Sherman function</span>

The Sherman function describes the dependence of electron-atom scattering events on the spin of the scattered electrons. It was first evaluated theoretically by the physicist Noah Sherman and it allows the measurement of polarization of an electron beam by Mott scattering experiments. A correct evaluation of the Sherman function associated to a particular experimental setup is of vital importance in experiments of spin polarized photoemission spectroscopy, which is an experimental technique which allows to obtain information about the magnetic behaviour of a sample.

The nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols μp and μn. The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the nuclear force or their magnetic moments, with the charged proton also interacting by the Coulomb force.