This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Since the Global Positioning System (GPS) was introduced in the late 1980s there have been many attempts to integrate it into a navigation-assistance system for blind and visually impaired people.
RightHear was first released in December 2015. It uses data from OpenStreetMap alongside their own databases and with this information, RightHear provides their users with multilingual audio-descriptions of the environment, indoors and outdoors.
RightHear main features are as follow:
Corsair is a GPS for pedestrians. It allows you to discover places around you and take you there. A new way of guidance has been developed by using the smartphone's vibration feature to indicate the direction to follow. This solution is particularly useful for people with visual impairments.
Cydalion is a navigation aid for people with visual impairments for Tango-enabled devices. Cydalion detects objects (including their height), offers custom sounds, and has a personalized user interface.
Candle is an open-source navigation app hosted on Github using OpenStreetMap, designed for the visually impaired. It features VoicePins for personalized location annotations, an 'Explore Near Me' function for discovering nearby points of interest, comprehensive Google_TalkBack support, and a feedback-enabled compass. The app also includes a feature to set compass directions to specific locations, aiding in navigation.
Lazarillo is based on Google Maps, OpenStreetMap and Foursquare alongside they own databases and with this information, Lazarillo collects the necessary data about the surroundings of the user to support the following features: [1]
Was designed in France to compensate for the limitations of traditional GPS and smartphone applications for the blind and visually impaired .[ citation needed ] The fruit of 8 years of research in collaboration with the CNRS, ANGEO is the only device capable of discretely, reliably guiding you when crossing areas where GPS satellites are masked.[ citation needed ]
When Apple introduced the iPhone 3GS in 2009, it was the first ever touch screen device accessible to the blind. iOS device usage has steadily increased among the blind and visually impaired population and numerous GPS apps targeting this user group have been developed since. [2]
Ariadne GPS, developed by Luca Giovanni Ciaffoni, was released in June 2011 and was one of the first GPS apps specifically designed for blind and visually impaired users. It is based on Google map data and has the following features:
BlindSquare is developed by MIPsoft and was first released in May 2012. It uses data from Foursquare and OpenStreetMap and offers a large feature set covering the needs of blind and visually impaired travelers. [3] It is based on Foursquare, OpenStreetMap, and Apple Maps data and supports the following features:
iMove has been developed by EveryWare Technologies and was first released in January 2013. It is unique, because it lets users record sound clips and associate them with saved locations. iMove offers the following features:
MyWay Classic was first released in January 2012 and is developed by the Swis Federation of the Blind. It has evolved into an app with a large set of features covering the needs of blind and visually impaired travelers. It uses OpenStreetMap data and includes the following features:
Seeing Assistant move is developed by Transition Technologies S.A. and was first released in March 2013. It is the only GPS app designed for blind and visually impaired people that lets the user operate the app through predefined speech commands. It is based on OpenStreetMap and supports the following features:
Sendero Seeing Eye GPS is developed by the Sendero Group in collaboration with several organizations for the blind (Seeing Eye, RNIB, Guide Dogs NSW ACT) and was first released in July 2013. The Seeing Eye GPS is a fully accessible turn-by-turn GPS iPhone app developed by Sendero Group. It has all the normal navigation features plus features unique to blind users, such as simple menu structure, automatic announcements of intersections and points of interest, and routes for both pedestrian and vehicle with heads-up announcements for approaching turns. It uses Foursquare and Google Places for points of interest and Google Maps for street info. [4]
Seeing Eye is not available globally and is offered under various names:
The Sendero apps include the following features:
ViaOpta Nav is developed by Novartis Pharmaceuticals Corporation and was first released in August 2014. It is available for both IOS and Android devices. It is the only GPS app targeting blind and visually impaired users that offers the possibility to search for accessibility information for example information about intersections, tactile paving, and audible traffic signals. Although OpenStreetMap supports respective categories, this information is not very widely available yet in the map data itself.
ViaOpta Nav uses Apple Maps (on iOS devices) and Google Maps (on Android devices) for address retrieval, and OpenStreetMap for route calculation, intersection information, and public points of interest. ViaOpta Nav supports the following main features:
The Loadstone project is developing an open source software for satellite navigation for blind and visually impaired users. The software is free and runs currently on many different Nokia devices with the S60 platform under all versions of the Symbian operating system. A GPS receiver must be connected to the cell phone by Bluetooth. Many blind people around the world are using Nokia cell phones because there are two screen reader products for the S60 Symbian platform; Talks from Nuance Communications and Mobile Speak from the Spanish company Code Factory. This makes these devices accessible by output of synthetic speech and also allow the use of third-party software, such as Loadstone GPS.
The Loadstone developers, who are blind, are from Vancouver, Glasgow, and Amsterdam. Many users from around the world have contributed improvement proposals as they know exactly what functionality helps to increase their pedestrian mobility. Monty Lilburn and Shawn Kirkpatrick started the project in 2004. After the first development successes, they made it public in May 2006. Since then, other volunteers have found their way to this project of global self-help. The program is under the GNU General Public License (GPL), and was financed entirely by the private developers and by donations of users. This product provides blind people with more independence from the trading policy and prices of the few global vendors of accessible satellite navigation solutions.
In large rural regions and developing or newly industrializing countries, nearly no exact map data is available in common map databases. As such, the Loadstone software provides users an option to create and store their own waypoints for navigation and share them with others. The Loadstone community is working on importing coordinates from free sources, such as the OpenStreetMap project. In addition they are searching for a sponsor of licenses for commercial map data, such as is offered by the company Tele Atlas. The other major supplier is Navteq, which belongs to Nokia.
Lodestone is the name of a natural magnetic iron that was used throughout history in the manufacturing of compasses.
Sighted owners of S60 devices can use Loadstone for leisure-time activities geocaching.[ citation needed ]
LoroDux was a project by Fachhochschule Hannover. Like in Loadstone the user is led by direction and distance information. The text on the screen is read out by a screenreader. Vibration-Only navigation is possible. Data can be imported from the OpenStreetMap project. The development is discontinued because the team prefers to use Java on Android for the future.[ citation needed ]
Mobile Geo is Code Factory's GPS navigation software for Windows Mobile-based Smartphones, Pocket PC phones and personal digital assistants (PDAs). Powered by GPS and mapping technology from the Sendero Group, Mobile Geo is the first solution specifically designed to serve as a navigation aid for people with a visual impairment which works with a wide range of mainstream mobile devices. Though it is a separately licensed product, Mobile Geo is seamlessly[ citation needed ] integrated with Code Factory's popular screen readers – Mobile Speak for Pocket PCs and Mobile Speak for Windows Mobile Smartphones.[ citation needed ]
Developed in Sweden and available since 2022. The system consists of a high precision GPS module connected to your smartphone and earphones that signals that the blind person stays along a pre-recorded digital path. Used for walking, running, skiing etc. outside without a companion.
The Victor Trekker, designed and manufactured by HumanWare (previously known as VisuAide), was launched in March 2003. It is a personal digital assistant (PDA) application operating on a Dell Axim 50/51 or later replaced by HP IPAQ 2490B Pocket PC, adapted for the blind and visually impaired with talking menus, talking maps, and GPS information. Fully portable (weight 600g), it offered features enabling a blind person to determine position, create routes and receive information on navigating to a destination. It also provided search functions for an exhaustive database of point of interests, such as restaurants, hotels, etc.
The PDA's touch screen is made accessible by a tactile keypad with buttons that is held in place with an elastic strap.
It is fully upgradeable, so it can expand to accommodate new hardware platforms and more detailed geographic information.
Trekker and Maestro, which is the first off-the-shelf accessible PDA based on Windows Mobile Pocket PC, are integrated and available since May 2005.
The Trekker is no longer sold by Humanware; the successor "Trekker Breeze" is a standalone unit. The software has fewer features than the original Trekker.[ citation needed ]
The Trekker Breeze is standalone hardware. Routes need to be recorded before they can be used. POIs are supported.
The BrailleNote GPS device is developed by Sendero Group, LLC, and Pulse Data International, now called HumanWare, in 2002. It is like a combination of a personal digital assistant, Map-quest software and a mechanical voice.
With a receiver about the size of a small cell phone, the BrailleNote GPS utilizes the GPS network to pinpoint a traveler's position on earth and nearby points of interest. The BrailleNote receives radio signals from satellites to chart the location of users and direct them to their destination with spoken information from the speech synthesizer. The system uses satellites to triangulate the carrier's position, much like a ship finding its location at sea.
Users can record points of interest such as local restaurants or any other location into the PDA's database. Afterward, they can use keyboard commands on the unit's keyboard to direct themselves to a specific point of interest.
The French company Kapsys offers a navigation system without a display, that works with speech input and output, called Kapten.
It was originally developed for cyclists but soon became a favourite in blind communities because of its low price compared to other accessible navigation solutions. Later versions took feedback about accessibility into account.
The Trinetra project aims to develop cost-effective, independence-enhancing technologies to benefit blind people. One such system addresses accessibility concerns of blind people using public transportation systems. Using GPS receivers and staggered Infrared sensors, information is relayed to a centralized fleet management server via a cellular modem. Blind people, using common text-to-speech enabled cell phones can query estimated time of arrival, locality, and current bus capacity using a web browser.
Trinetra, spearheaded by Professor Priya Narasimhan, is an ongoing project at the Electrical and Computer Engineering department of Carnegie Mellon University. Additional research topics include item-level UPC and RFID identification while grocery shopping and indoor navigation in retail settings.[ citation needed ]
MoBIC means Mobility of Blind and Elderly people Interacting with Computers, which was carried out from 1994 to 1996 supported by the Commission of the European Union. It was developing a route planning system which is designed to allow a blind person access to information from many sources such as bus and train timetables as well as electronic maps of the locality. The planning system helps blind people to study and plan their routes in advance, indoors.
With the addition of devices to give the precise current position and orientation of the blind pedestrian, the system could then be used outdoors. The outdoor positioning system is based on signals and satellites which give the longitude and latitude to within a metre; the computer converts this data to a position on an electronic map of locality. The output from the system is in the form of spoken messages.
Drishti is a wireless pedestrian navigation system. It integrates several technologies including wearable computers, voice recognition and synthesis, wireless networks, geographic information system (GIS) and GPS. It augments contextual information to the visually impaired and computed optimized routes based on user preference, temporal constraints (e.g. traffic congestion), and dynamic obstacles (e.g. ongoing ground work, road blockade for special events).[ citation needed ]
The system constantly guides the blind user to navigate based on static and dynamic data. Environmental conditions and landmark information queries from a spatial database along their route are provided on the fly through detailed explanatory voice cues. The system also provides capability for the user to add intelligence, as perceived by the blind user, to the central server hosting the spatial database.
In 1985, Jack Loomis, a professor of psychology at the University of California, Santa Barbara, came up with the idea of a GPS-based navigation system for the visually impaired. A short unpublished paper (Loomis, 1985)[ full citation needed ] outlined the concept and detailed some ideas for implementation, including the idea of a virtual sound interface. Loomis directed the project for over 20 years, in collaboration with Reginald Golledge (1937–2009), Professor of Geography at UCSB, and Roberta Klatzky, Professor of Psychology (now at Carnegie Mellon University). Their combination of development and applied research was supported by three multi-year grants from the National Eye Institute (NEI) and another multi-year consortium grant from the National Institute on Disability and Rehabilitation Research (NIDRR), headed by Michael May of Sendero Group. In 1993, the UCSB group first publicly demonstrated the Personal Guidance System (PGS) using a bulky prototype carried in a backpack. Since then, they created several versions of the PGS, one of which was carried in a small pack worn at the waist. Their project mostly focused on the user interface and the resulting research has defined the legacy of the project. As indicated earlier in this entry, several wearable systems are now commercially available. These systems provide verbal guidance and environmental information via speech and braille displays. But just as drivers and pilots want pictorial information from their navigation systems, survey research by the UCSB group has shown that visually impaired people often want direct perceptual information about the environment. Most of their R&D has dealt with several types of "spatial display", with researchers Jim Marston and Nicholas Giudice contributing to the recent efforts. The first is a virtual acoustic display, which provides auditory information to the user via earphones (as proposed in the 1985 concept paper). With this display, the user hears important environmental locations, such as turn points along the route and points of interest. The labels of these locations are converted to synthetic speech and then displayed using auditory direction and distance cues, such that the spoken labels appear in the auditory space of the user. A second type of display, which the group calls a "haptic pointer interface", was inspired by the hand-held receiver used in the Talking Signs© system of remote signage. The user holds a small wand, to which are attached an electronic compass and a small loudspeaker or vibrator. When the hand is pointing toward some location represented in the computer database, the user hears a tone or feels a vibration. Supplementary verbal information can be provided by synthetic speech. The user moves toward the desired location by aligning the body with the hand while maintaining the "on-course" auditory or vibratory signal. Other variants of the pointer interface involve putting the compass on the body or head and turning the body or head until the on-course signal is perceived. Six published route-guidance studies indicate that spatial displays provide effective route guidance, entail less cognitive load than speech interfaces, and are generally preferred by visually impaired users.[ citation needed ]
Prof. W. Balachandran is the pioneer and the head of GPS research group at Brunel University. He and his research team are pursuing research on navigation system for blind and visually impaired people. The system is based on the integration of state of the art current technologies, including high-accuracy GPS positioning, GIS, electronic compass and wireless digital video transmission (remote vision) facility with an accuracy of 3~4m. It provides an automated guidance using the information from daily updated digital map datasets e.g. roadworks. If required the remote guidance of visually impaired pedestrians by a sighted human guide using the information from the digital map and from the remote video image provides flexibility.
The difficulties encountered include the availability of up to date information and what information to offer including the navigation protocol. Levels of functionality have been created to tailor the information to the user's requirements.
NOPPA navigation and guidance system was designed to offer public transport passenger and route information using GPS technology for the visually impaired. This was a three-year (2002~2004) project in VTT Industrial Systems in Finland. The system provides an unbroken trip chain for a pedestrian using buses, commuter trains and trams in three neighbor cities' area. It is based on an information server concept, which has user-centered and task oriented approach for solving information needs of special needs groups.
In the system, the Information Server is an interpreter between the user and Internet information systems. It collects, filters and integrates information from different sources and delivers results to the user. The server handles speech recognition and functions requiring either heavy calculations or data transfer. The data transfer between the server and the client is minimized. The user terminal holds speech synthesis and most of route guidance.
NOPPA can currently offer basic route planning and navigation services in Finland. In practice, map data can have outdated information or inaccuracies, positioning can be unavailable or inaccurate, or wireless data transmission is not always available.
NAVIG is a multidisciplinary project, with fundamental and applied aspects. The main objective is to increase the autonomy of blind people in their navigation capabilities. Reaching a destination while avoiding obstacles is one of the most difficult issue that blind individuals have to face.
Achieving autonomous navigation will be pursued indoor and outdoor, in known and unknown environments. The project consortium is composed by two research centers in computer sciences specialized in human-machine interaction (IRIT) for handicapped people and in auditory perception, spatial cognition, sound design and augmented reality (LIMSI). Another research center is specialized in human and computer vision (CERCO), and two industrial partners are active in artificial vision (Spikenet Technology) and in pedestrian geolocalisation (Navocap). The last member of the consortium is an educational research center for the visually impaired (CESDV – IJA, Institute of Blind Youth).[ citation needed ]
TANIA is a project founded at the University of Stuttgart, Germany. The hardware is based on GPS and RFID. It allows navigation for blind and deafblind persons with step accuracy. It only works where special maps have been created for the system. [5]
Wayfinder Access was a GPS solution from the Swedish company Wayfinder Systems AB. This application for Symbian phones was designed especially to work with screen readers, such as Mobile Speak from Code Factory or TALKS from Nuance Communications and offers text-to-speech technology. It is able to take the special needs of the blind and visually impaired into consideration. Symbian screen reader software offers more than just the reading of the application's screens, but also supports braille devices.
Highlights of Wayfinder Access include, but are not limited to:
The Wayfinder Access Service was shut down in 2011 after the company was taken over by Vodafone.
An automotive navigation system is part of the automobile controls or a third party add-on used to find direction in an automobile. It typically uses a satellite navigation device to get its position data which is then correlated to a position on a road. When directions are needed routing can be calculated. On the fly traffic information can be used to adjust the route.
TomTom N.V. is a Dutch multinational developer and creator of location technology and consumer electronics. Founded in 1991 and headquartered in Amsterdam, TomTom released its first generation of satellite navigation devices to market in 2004. As of 2019 the company has over 4,500 employees worldwide and operations in 29 countries throughout Europe, Asia-Pacific, and the Americas.
A point of interest (POI) is a specific point location that someone may find useful or interesting. An example is a point on the Earth representing the location of the Eiffel Tower, or a point on Mars representing the location of its highest mountain, Olympus Mons. Most consumers use the term when referring to hotels, campsites, fuel stations or any other categories used in modern automotive navigation systems.
Traffic reporting is the near real-time distribution of information about road conditions such as traffic congestion, detours, and traffic collisions. The reports help drivers anticipate and avoid traffic problems. Traffic reports, especially in cities, may also report on major delays to mass transit that does not necessarily involve roads. In addition to periodic broadcast reports, traffic information can be transmitted to GPS units, smartphones, and personal computers.
Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.
A Personal Navigation Assistant (PNA) also known as Personal Navigation Device or Portable Navigation Device (PND) is a portable electronic product which combines a positioning capability and navigation functions.
A satellite navigation device, satnav device or satellite navigation receiver is a user equipment that uses one or more of several global navigation satellite systems (GNSS) to calculate the device's geographical position and provide navigational advice. Depending on the software used, the satnav device may display the position on a map, as geographic coordinates, or may offer routing directions.
Here Technologies is a Dutch multinational group specialized in mapping technologies, location data and related automotive services to individuals and companies. It is majority-owned by a consortium of German automotive companies and American semiconductor company Intel whilst other companies also own minority stakes. Its roots date back to U.S.-based Navteq in 1985, which was acquired by Finland-based Nokia in 2007. Here is currently based in The Netherlands.
Computer cartography is the art, science, and technology of making and using maps with a computer. This technology represents a paradigm shift in how maps are produced, but is still fundamentally a subset of traditional cartography. The primary function of this technology is to produce maps, including creation of accurate representations of a particular area such as, detailing major road arteries and other points of interest for navigation, and in the creation of thematic maps. Computer cartography is one of the main functions of geographic information systems (GIS), however, GIS is not necessary to facilitate computer cartography and has functions beyond just making maps. The first peer-reviewed publications on using computers to help in the cartographic process predate the introduction of full GIS by several years.
Google Maps Navigation is a mobile application developed by Google for the Android and iOS operating systems that later integrated into the Google Maps mobile app. The application uses an Internet connection to a GPS navigation system to provide turn-by-turn voice-guided instructions on how to arrive at a given destination. The application requires a connection to Internet data and normally uses a GPS satellite connection to determine its location. A user can enter a destination into the application, which will plot a path to it. The app displays the user's progress along the route and issues instructions for each turn.
Sygic is a Slovak company of global automotive navigation systems for mobile phones and tablets. The company was founded in 2004 and is headquartered in Bratislava, Slovakia. It became the first company to offer navigation for iPhone and second for Android. In 2015 Sygic reached milestone of 100 million downloads of its navigation app.
Turn-by-turn navigation is a feature of some satellite navigation devices where directions for a selected route are continually presented to the user in the form of spoken or visual instructions. The system keeps the user up-to-date about the best route to the destination, and is often updated according to changing factors such as traffic and road conditions. Turn-by-turn systems typically use an electronic voice to inform the user whether to turn left or right, the street name, and the distance to the next turn.
Telenav, Inc. is a wireless location-based services corporation that provides services including Global Positioning System (GPS) satellite navigation, local search, automotive navigation solutions, mobile advertising, enterprise mobility and workflow automation. The company’s headquarters are located in Santa Clara, California in the United States with additional offices in the U.S., Germany, Japan, Romania, China, and Brazil.
NaviFon is a free mobile navigation application, designed specifically for mobile devices, and has all the functions of the portable device. Works on all mobile platforms: Windows Mobile, iPhone, Java, Symbian S60 ed.3 and S60 ed.5., Android, BlackBerry, and Bada. It allows using a phone as a full GPS navigator. Since 2007, NaviFon has been installed by Samsung on phones at the factory. It is available for download in all popular applications stores: iTunes Store, GetJar, and Android Market.
OsmAnd is a map and navigation app for Android and iOS. It uses the OpenStreetMap (OSM) map database for its primary displays, but is an independent app not endorsed by the OpenStreetMap Foundation. It is available in both free and paid versions; the latter unlocks the download limit for offline maps and provides access to Wikipedia points of interest (POIs) and their descriptions from within the app. Map data can be stored on the device for offline use. Using the device's GPS capabilities, OsmAnd offers routing, with visual and voice guidance, for car, bike, and pedestrian. All of the main functionalities work both online and offline.
Here WeGo is a web mapping and satellite navigation software, operated by HERE Technologies and available on the Web and mobile platforms. It is based on HERE's location data platform, providing its in-house data, which includes satellite views, traffic data, and other location services. Maps are updated every two or three months.
Locus Map is a multi-functional Android navigation app. Primarily it is designed and used for leisure time outdoor activities like hiking, biking, or geocaching. The app is also used by professionals e.g. by S&R teams or for collecting geospatial data.
Accessibility apps are mobile apps that increase the accessibility of a device for individuals with disabilities. Accessibility apps are applications that increase the accessibility of a device or technology for individuals with disabilities. Applications, also known as, application software, are programs that are designed for end users to be able to perform specific tasks. There are many different types of apps, some examples include, word processors, web browsers, media players, console games, photo editors, accounting applications and flight simulators. Accessibility in general refers to making the design of products and environment more accommodating to those with disabilities. Accessibility apps can also include making a current version of software or hardware more accessible by adding features. Accessibility apps main aim is to remove any barriers to technological goods and services, making the app available to any group of society to use. A basic example is that a person who experiences vision impairments is able to access technology through enabling voice recognition and text-to-speech software. Accessibility apps are closely related to assistive technology.
Karta GPS is a mobile application developed by Karta Software Technologies Lda., a daughter company of NDrive, for the Android, iOS and iPadOS operating systems. It is distributed for free and pairs open-source map data from OpenStreetMap alongside curated content from Yelp and Foursquare.
Geopositioning is the process of determining or estimating the geographic position of an object.