Event type | Gamma-ray burst |
---|---|
Constellation | Taurus |
Right ascension | 03h 51m 22.29s |
Declination | +28° 17′ 52.2″ |
Distance | 7,400,000,000 ly (2.3×109 pc) |
Total energy output | 1.2×1051 ergs |
Other designations | GRB 070714B |
GRB 070714B was a gamma-ray burst (GRB) that was detected on 14 July 2007 at 04:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).
At a total duration of only 3 seconds, GRB 070714B was classified as a short burst, a subclass of GRBs which is believed to be caused by the merger of two neutron stars. GRB 070714B had a redshift of z = 0.92, corresponding to a distance of about 7.4 billion light years, making it the most distant short burst detected as of 2007.
GRB 070714B was detected by the Swift Gamma-Ray Burst Mission satellite on 14 July 2007 at 04:59 UTC. The burst lasted only 3 seconds and reached its peak intensity 0.2 seconds after the initial detection. [1] The optical afterglow was detected by the Liverpool Telescope [2] and the William Herschel Telescope. [3]
Spectroscopy of the optical afterglow and the burst's host galaxy revealed a single emission line of oxygen at a redshift of z = 0.92. [4] This corresponds to a distance of 7.4 billion light years, making it the oldest and most distant short burst ever detected. [5] The previous record holder had been GRB 051221A at a redshift of z = 0.546. [4] [6] At a redshift of z = 0.92, the total energy released by GRB 070714B (assuming isotropic emission) was approximately 1.2×1051 ergs, which is several orders of magnitude higher than short-duration bursts with a redshift less than z = 0.5, but still significantly smaller than typical long-duration bursts. [7]
In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic events occurring in distant galaxies which represent the brightest and "most powerful class of explosion in the universe." These extreme electromagnetic events are second only to the Big Bang as the most energetic and luminous phenomenon ever known. Gamma-ray bursts can last from a few milliseconds to several hours. After the initial flash of gamma rays, a longer-lived § afterglow is emitted, usually in the longer wavelengths of X-ray, ultraviolet, optical, infrared, microwave or radio frequencies.
Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).
GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.
GRB 080319B was a gamma-ray burst (GRB) detected by the Swift satellite at 06:12 UTC on March 19, 2008. The burst set a new record for the farthest object that was observable with the naked eye: it had a peak visual apparent magnitude of 5.7 and remained visible to human eyes for approximately 30 seconds. The magnitude was brighter than 9.0 for approximately 60 seconds. If viewed from 1 AU away, it would have had a peak apparent magnitude of −67.57. It had an absolute magnitude of −38.6, beaten by GRB 220101A with −39.4 in 2023.
GRB 070125 is a gamma-ray burst (GRB) that was observed on January 25, 2007, by the InterPlanetary Network, which lasted for around 70 seconds. It is unique in that it did not occur in a galaxy, but in intergalactic space. This is unusual, since they are caused by the hypernovae of young massive stars, which usually means having to reside in a galaxy, as almost all stars are formed in galaxies, particularly high mass ones. It has a redshift of 1.55, which equals to a light travel distance of 9.5 billion years.
The Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) is an imaging instrument used to investigate Gamma-Ray Burst afterglows and for doing follow-up observations on exoplanets using transit photometry. It is operated at the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in the southern part of the Atacama desert, about 600 kilometres north of Santiago de Chile and at an altitude of 2,400 metres.
GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.
GRB 051221A was a gamma ray burst (GRB) that was detected by NASA's Swift Gamma-Ray Burst Mission on December 21, 2005. The coordinates of the burst were α=21h 54m 50.7s, δ=16° 53′ 31.9″, and it lasted about 1.4 seconds. The same satellite discovered X-ray emission from the same object, and the GMOS Instrument on the Gemini Observatory discovered an afterglow in the visible spectrum. This was observed for the next ten days, allowing a redshift of Z = 0.5464 to be determined for the host galaxy.
GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.
GRB 050709 was a gamma-ray burst (GRB) detected on July 9, 2005. A gamma-ray burst is a highly luminous flash of gamma rays, the most energetic form of electromagnetic radiation, which is often followed by a longer-lived "afterglow" emitting at longer wavelengths.
GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 020813 was a gamma-ray burst (GRB) that was detected on 13 August 2002 at 02:44 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 031203 was a gamma-ray burst (GRB) detected on December 3, 2003. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.
GRB 030329 was a gamma-ray burst (GRB) that was detected on 29 March 2003 at 11:37 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths. GRB 030329 was the first burst whose afterglow definitively exhibited characteristics of a supernova, confirming the existence of a relationship between the two phenomena.
GRB 090429B was a gamma-ray burst observed on 29 April 2009 by the Burst Alert Telescope aboard the Swift satellite. The burst triggered a standard burst-response observation sequence, which started 106 seconds after the burst. The X-ray telescope aboard the satellite identified an uncatalogued fading source. No optical or UV counterpart was seen in the UV–optical telescope. Around 2.5 hours after the burst trigger, a series of observations was carried out by the Gemini North telescope, which detected a bright object in the infrared part of the spectrum. No evidence of a host galaxy was found either by Gemini North or by the Hubble Space Telescope. Though this burst was detected in 2009, it was not until May 2011 that its distance estimate of 13.14 billion light-years was announced. With 90% likelihood, the burst had a photometric redshift greater than z = 9.06, which would make it the most distant GRB known, although the error bar on this estimate is large, providing a lower limit of z > 7.
GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.
GRB 160625B was a bright gamma-ray burst (GRB) detected by NASA's Fermi Gamma-ray Space Telescope on 25 June 2016 and, three minutes later, by the Large Area Telescope. This was followed by a bright prompt optical flash, during which variable linear polarization was measured. This was the first time that these observations were made when the GRB was still bright and active. The source of the GRB was a possible black hole, within the Delphinus constellation, about 9 billion light-years (light travel distance) away (a redshift of z = 1.406). It had a fluence of 5.7×10−4 erg cm−2, and energy of 5 × 1054 erg. The burst lasted over 11 minutes (680 s), and is one of the most energetic bursts ever recorded.
GRB 230307A was an extremely bright, long duration gamma-ray burst (GRB), likely produced as a consequence of a neutron star merger or black hole - neutron star merger event. It lasted around three minutes, and was observed to have a gamma ray fluence of 3×10−4 erg cm−2 in the 10 to 1000 KeV (electronvolt) range making it second only to GRB 221009A, which was an extremely bright and long duration gamma ray burst deemed to be the Brightest Of All Time. The burst was around 1000 times more powerful than a typical gamma-ray burst. The burst had the second-highest gamma-ray fluence ever recorded. The James Webb Space Telescope (JWST) detected the chemical signature for tellurium (Te). The neutron stars were once part of a spiral galaxy but were kicked out via gravitational interactions. Then while outside of the main galaxy at a distance of 120,000 light years, they merged, creating GRB 230307A.