GRB 070714B

Last updated
GRB 070714B
Artist's impression of a gamma-ray burst.jpg
Event type Gamma-ray burst
Datec. 7.4 billion years ago
(detected 14 July 2007, 4:59 UTC)
Duration3 seconds
Instrument Swift
Constellation Taurus
Right ascension 03h 51m 22.29s
Declination +28° 17 52.2
Distancec. 7.4 billion ly
Redshift 0.92
Total energy output1.2×1051 ergs
Other designationsGRB 070714B

GRB 070714B was a gamma-ray burst (GRB) that was detected on 14 July 2007 at 4:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, and radio).

Contents

At a total duration of only 3 seconds, GRB 070714B was classified as a short burst, a subclass of GRBs which is believed to be caused by the merger of two neutron stars. GRB 070714B had a redshift of z = 0.92, corresponding to a distance of about 7.4 billion light years, making it the most distant short burst detected as of 2007.

Observations

GRB 070714B was detected by the Swift satellite on 14 July 2007 at 04:59 UTC. The burst lasted only 3 seconds and reached its peak intensity 0.2 seconds after the initial detection. [1] The optical afterglow was detected by the Liverpool Telescope [2] and the William Herschel Telescope. [3]

Distance record

Spectroscopy of the optical afterglow and the burst's host galaxy revealed a single emission line of oxygen at a redshift of z = 0.92. [4] This corresponds to a distance of 7.4 billion light years, making it the oldest and most distant short burst ever detected. [5] The previous record holder had been GRB 051221A at a redshift of z = 0.546. [4] [6] At a redshift of z = 0.92, the total energy released by GRB 070714B (assuming isotropic emission) was approximately 1.2×1051 ergs, which is several orders of magnitude higher than short-duration bursts with a redshift less than z = 0.5, but still significantly smaller than typical long-duration bursts. [7]

Notes

  1. Barthelmy, Scott (14 July 2007). "GRB 070714: Swift detection of a bright burst, possibly short". GCN Circulars. 6620: 1. Bibcode:2007GCN..6620....1R.
  2. Melandri, Andrea (14 July 2007). "GRB 070714 : Liverpool Telescope optical counterpart?". GCN Circulars. 6621: 1. Bibcode:2007GCN..6621....1M.
  3. Levan, Andrew (14 July 2007). "GRB 070714B: confirmation of optical afterglow". GCN Circulars. 6630: 1.
  4. 1 2 Graham, J. F.; et al. (3 June 2009). "GRB 070714B—Discovery of the Highest Spectroscopically Confirmed Short Burst Redshift". The Astrophysical Journal. 698 (2): 1620–1629. arXiv: 0808.2610 . Bibcode:2009ApJ...698.1620G. doi:10.1088/0004-637X/698/2/1620.
  5. Naeye, Robert (8 January 2008). "NASA and Gemini Probe Mysterious Distant Explosion". NASA Goddard Space Flight Center. Retrieved 14 July 2010.
  6. Soderberg, A. M.; et al. (10 October 2006). "The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a". The Astrophysical Journal. 650 (1): 261–271. arXiv: astro-ph/0601455 . Bibcode:2006ApJ...650..261S. doi:10.1086/506429.
  7. Cenko, S. Bradley; et al. (7 February 2008). "GRBs 070429B and 070714B: The High End of the Short-Duration Gamma-Ray Burst Redshift Distribution". The Astrophysical Journal. arXiv: 0802.0874 . Bibcode:2008arXiv0802.0874C.

Related Research Articles

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, being the brightest and most extreme explosive events in the entire universe, as NASA describes the bursts as the "most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Gamma-ray bursts can last from ten milliseconds to several hours. After the initial flash of gamma rays, an "afterglow" is emitted, which is longer lived and usually emitted at longer wavelengths.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">GRB 970228</span> Gamma-ray burst detected on 28 Feb 1997, the first for which an afterglow was observed

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow, but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays ; this resulted in large positional uncertainties which left their nature very unclear.

<span class="mw-page-title-main">GRB 080319B</span> Gamma-ray burst in the constellation Boötes

GRB 080319B was a gamma-ray burst (GRB) detected by the Swift satellite at 6:12 UTC on March 19, 2008. The burst set a new record for the farthest object that was observable with the naked eye: it had a peak visual apparent magnitude of 5.7 and remained visible to human eyes for approximately 30 seconds. The magnitude was brighter than 9.0 for approximately 60 seconds. If viewed from 1 AU away, it would have had a peak apparent magnitude of −67.57. It had an absolute magnitude of −38.6, beaten by GRB 220101A with −39.4 in 2023.

<span class="mw-page-title-main">Gamma-Ray Burst Optical/Near-Infrared Detector</span>

The Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) is an imaging instrument used to investigate Gamma-Ray Burst afterglows and for doing follow-up observations on exoplanets using transit photometry. It is operated at the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in the southern part of the Atacama desert, about 600 kilometres north of Santiago de Chile and at an altitude of 2,400 metres.

<span class="mw-page-title-main">GRB 970508</span> Gamma-ray burst detected on May 8, 1997

GRB 970508 was a gamma-ray burst (GRB) detected on May 8, 1997, at 21:42 UTC; it is historically important as the second GRB with a detected afterglow at other wavelengths, the first to have a direct redshift measurement of the afterglow, and the first to be detected at radio wavelengths.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

<span class="mw-page-title-main">GRB 051221A</span> Gamma ray burst in 2005

GRB 051221A was a gamma ray burst (GRB) that was detected by NASA's Swift Gamma-Ray Burst Mission on December 21, 2005. The coordinates of the burst were α=21h 54m 50.7s, δ=16° 53′ 31.9″, and it lasted about 1.4 seconds. The same satellite discovered X-ray emission from the same object, and the GMOS Instrument on the Gemini Observatory discovered an afterglow in the visible spectrum. This was observed for the next ten days, allowing a redshift of Z = 0.5464 to be determined for the host galaxy.

<span class="mw-page-title-main">GRB 090423</span> Gamma-ray burst detected in 2009

GRB 090423 was a gamma-ray burst (GRB) detected by the Swift Gamma-Ray Burst Mission on April 23, 2009, at 07:55:19 UTC whose afterglow was detected in the infrared and enabled astronomers to determine that its redshift is z = 8.2, making it one of the most distant objects detected at that time with a spectroscopic redshift.

<span class="mw-page-title-main">GRB 050709</span>

GRB 050709 was a gamma-ray burst (GRB) detected on July 9, 2005. A gamma-ray burst is a highly luminous flash of gamma rays, the most energetic form of electromagnetic radiation, which is often followed by a longer-lived "afterglow" emitting at longer wavelengths.

<span class="mw-page-title-main">GRB 000131</span> GRB in the constellation Carina

GRB 000131 was a gamma-ray burst (GRB) that was detected on 31 January 2000 at 14:59 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 020813 was a gamma-ray burst (GRB) that was detected on 13 August 2002 at 02:44 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 011211 was a gamma-ray burst (GRB) detected on December 11, 2001. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 031203 was a gamma-ray burst (GRB) detected on December 3, 2003. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

GRB 030329 was a gamma-ray burst (GRB) that was detected on 29 March 2003 at 11:37 UTC. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths. GRB 030329 was the first burst whose afterglow definitively exhibited characteristics of a supernova, confirming the existence of a relationship between the two phenomena.

<span class="mw-page-title-main">GRB 090429B</span> Gamma-ray burst in constellation Canes Venatici

GRB 090429B was a gamma-ray burst observed on 29 April 2009 by the Burst Alert Telescope aboard the Swift satellite. The burst triggered a standard burst-response observation sequence, which started 106 seconds after the burst. The X-ray telescope aboard the satellite identified an uncatalogued fading source. No optical or UV counterpart was seen in the UV–optical telescope. Around 2.5 hours after the burst trigger, a series of observations was carried out by the Gemini North telescope, which detected a bright object in the infrared part of the spectrum. No evidence of a host galaxy was found either by Gemini North or by the Hubble Space Telescope. Though this burst was detected in 2009, it was not until May 2011 that its distance estimate of 13.14 billion light-years was announced. With 90% likelihood, the burst had a photometric redshift greater than z = 9.06, which would make it the most distant GRB known, although the error bar on this estimate is large, providing a lower limit of z > 7.

<span class="mw-page-title-main">GRB 101225A</span> Gamma-ray burst event of December 25, 2010

GRB 101225A, also known as the "Christmas burst", was a cosmic explosion first detected by NASA's Swift observatory on Christmas Day 2010. The gamma-ray emission lasted at least 28 minutes, which is unusually long. Follow-up observations of the burst's afterglow by the Hubble Space Telescope and ground-based observatories were unable to determine the object's distance using spectroscopic methods.

<span class="mw-page-title-main">Kilonova</span> Neutron star merger

A kilonova is a transient astronomical event that occurs in a compact binary system when two neutron stars or a neutron star and a black hole merge. These mergers are thought to produce gamma-ray bursts and emit bright electromagnetic radiation, called "kilonovae", due to the radioactive decay of heavy r-process nuclei that are produced and ejected fairly isotropically during the merger process. The measured high sphericity of the kilonova AT2017gfo at early epochs was deduced from the blackbody nature of its spectrum.

<span class="mw-page-title-main">GRB 230307A</span>

GRB 230307A was an extremely bright, long duration gamma-ray burst (GRB), likely produced as a consequence of a neutron star merger or black hole - neutron star merger event. It lasted around three minutes, and was observed to have a gamma ray fluence of 3×10-4 erg cm-2 in the 10 to 1000 KeV (electronvolt) range making it second only to GRB 221009A, which was an extremely bright and long duration gamma ray burst deemed to be the Brightest Of All Time. The burst was around 1000 times more powerful than a typical gamma-ray burst. The burst had the second-highest gamma-ray fluence ever recorded. The James Webb Space Telescope (JWST) detected the chemical signature for tellurium (Te). The neutron stars were once part of a spiral galaxy (host galaxy) but were kicked out via gravitational interactions. Then while outside of the main galaxy at a distance of 120,000 light years, they merged, creating GRB 230307A.