Gapmer

Last updated

Gapmers are short DNA antisense oligonucleotide structures with RNA-like segments on both sides of the sequence. [1] These linear pieces of genetic information are designed to hybridize to a target piece of RNA and silence the gene through the induction of RNase H cleavage. Binding of the gapmer to the target has a higher affinity due to the modified RNA flanking regions, as well as resistance to degradation by nucleases. [2] [3] Gapmers are currently being developed as therapeutics for a variety of cancers, viruses, and other chronic genetic disorders. [4]

Contents

Gapmer Structure Gapmer molecular structure.png
Gapmer Structure

Chemical Structure

Gapmers are composed of short DNA strands flanked by strands of RNA mimics. The mimics are typically composed of locked nucleic acids (LNA), 2’-OMe, or 2’-F modified bases. [2] LNA sequences are RNA analogues "locked" into an ideal Watson-Crick base pairing conformation. Gapmers often utilize nucleotides modified with phosphorothioate (PS) groups. [4] [3]

Mechanism of Action

The mechanism of therapeutic gene-silencing action relies on degradation through the action of RNase H. [1] [5] Nearly all organisms utilize this family of enzymes to degrade DNA-RNA hybrids as a defense against viral infection. [6] In protein synthesis, DNA is first transcribed into mRNA, and then translated in an amino acid sequence. Gapmers take advantage of this biological pathway by binding to the mRNA target. [7] In humans, the gapmer DNA-mRNA duplex is degraded by RNase H1. [1] [5] The degradation of the mRNA prevents protein synthesis [7] [8]

Gapmer Mechanism of Action Gapmer mechanism of action updated.png
Gapmer Mechanism of Action

Advantages

The gapmer chemical structure is designed to increase resistance to nuclease degradation and enhance stability in vivo. [1] [2] LNAs, 2’-OMe, or 2’-F modified bases are chemical analogs of natural RNA nucleic acids. These modifications allow for an increase in nuclease resistance, reduced immunogenicity, and a decrease in toxicity. [1] Gapmers can also have a high binding affinity to the target mRNA. [1] This high binding affinity reduces off-target effects, non-specific binding, and unwanted gene silencing [2]

Therapeutics

Mipomersen (Kynamro)

Kynamro was approved by the FDA in January 2013 for the treatment of homozygous familial hypercholesterolemia (HoFH). [9] The drug, developed by Ionis Pharmaceuticals and marketed by Genzyme Corporation, is administered via subcutaneous injection in the form of a mipomersen sodium solution. The chemical structure is composed of a 20-nucleotide (20-mer) chain with phosphorothioate (PS) backbone modifications and 2'-O-Methoxyethyl (MOE) ribose substitutions. [4] Kynamro targets the mRNA product of the APOB gene, which codes for the Apolipoprotein B-100 protein, a component of low-density lipoprotein (LDL). [2] The binding of mipomersen to the APOB mRNA effectively blocks the translation of ApoB-100, and the gapmer-RNA hybrid is then degraded by the RNase H enzyme. Kynamro is reported to have an elimination half-life of approximately 1–2 months [9]

Inotersen (Tegsedi®)

Tegsedi, developed and marketed by Ionis Pharmaceuticals, was approved by the FDA in October 2018 for the treatment of hereditary transthyretin amyloidosis (hATTR). [10] The chemical structure is a 20-mer oligonucleotide with PS backbone modifications and 2’-MOE ribose substitutions. [4] Tegsedi, in the form of an inotersen sodium solution, is administered subcutaneously on a weekly interval. Inotersen binds to the mRNA coding for the transthyretin protein, [11] which blocks translation of the mRNA and recruits RNase enzymes to degrade the gapmer-RNA hybrid. This effectively reduces the level of transthyretin in blood serum, which has been shown to treat polyneuropathy symptoms in patients with hATTR [11]

Safety

Gapmer antisense oligonucleotides (ASOs) have the potential to cause unintended, off-target effects. These off-target effects are produced when the gapmer binds to mRNA with a sufficient degree of complementarity to the target mRNA, blocking or down-regulating the translation of unintended proteins. [12] The functional consequences of gapmer off-target effects can vary widely, depending on the proteins affected and the extent of the down-regulation. Gapmer-based therapeutics also have the potential for side effects. For example, Kynamro has been shown to induce injection site reactions, nausea, headaches, flu-like symptoms, and hepatotoxic reactions. [9] Side effects of Inotersen include thrombocytopenia, glomerulonephritis, injection site reactions, nausea, headache, fatigue, and fever [10]

See also

Related Research Articles

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

Gene silencing is the regulation of gene expression in a cell to prevent the expression of a certain gene. Gene silencing can occur during either transcription or translation and is often used in research. In particular, methods used to silence genes are being increasingly used to produce therapeutics to combat cancer and other diseases, such as infectious diseases and neurodegenerative disorders.

Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript.

Ribonuclease Class of enzyme that catalyzes the degradation of RNA

Ribonuclease is a type of nuclease that catalyzes the degradation of RNA into smaller components. Ribonucleases can be divided into endoribonucleases and exoribonucleases, and comprise several sub-classes within the EC 2.7 and 3.1 classes of enzymes.

Ribonuclease H

Ribonuclease H is a family of non-sequence-specific endonuclease enzymes that catalyze the cleavage of RNA in an RNA/DNA substrate via a hydrolytic mechanism. Members of the RNase H family can be found in nearly all organisms, from bacteria to archaea to eukaryotes.

Locked nucleic acid Biological molecule

A locked nucleic acid (LNA), also known as bridged nucleic acid (BNA), and often referred to as inaccessible RNA, is a modified RNA nucleotide in which the ribose moiety is modified with an extra bridge connecting the 2' oxygen and 4' carbon. The bridge "locks" the ribose in the 3'-endo (North) conformation, which is often found in the A-form duplexes. This structure can be attributed to the increased stability against enzymatic degradation; moreover the structure of LNA has improved specificity and affinity as a monomer or a constituent of an oligonucleotide. LNA nucleotides can be mixed with DNA or RNA residues in the oligonucleotide, in effect hybridizing with DNA or RNA according to Watson-Crick base-pairing rules.

Small interfering RNA

Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA non-coding RNA molecules, typically 20-27 base pairs in length, similar to miRNA, and operating within the RNA interference (RNAi) pathway. It interferes with the expression of specific genes with complementary nucleotide sequences by degrading mRNA after transcription, preventing translation.

Morpholino Chemical compound

A Morpholino, also known as a Morpholino oligomer and as a phosphorodiamidate Morpholino oligomer (PMO), is a type of oligomer molecule used in molecular biology to modify gene expression. Its molecular structure contains DNA bases attached to a backbone of methylenemorpholine rings linked through phosphorodiamidate groups. Morpholinos block access of other molecules to small specific sequences of the base-pairing surfaces of ribonucleic acid (RNA). Morpholinos are used as research tools for reverse genetics by knocking down gene function.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

Antisense RNA

Antisense RNA (asRNA), also referred to as antisense transcript, natural antisense transcript (NAT) or antisense oligonucleotide, is a single stranded RNA that is complementary to a protein coding messenger RNA (mRNA) with which it hybridizes, and thereby blocks its translation into protein. asRNAs have been found in both prokaryotes and eukaryotes, and can be classified into short and long non-coding RNAs (ncRNAs). The primary function of asRNA is regulating gene expression. asRNAs may also be produced synthetically and have found wide spread use as research tools for gene knockdown. They may also have therapeutic applications.

The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which functions in gene silencing via a variety of pathways at the transcriptional and translational levels. Using single-stranded RNA (ssRNA) fragments, such as microRNA (miRNA), or double-stranded small interfering RNA (siRNA), the complex functions as a key tool in gene regulation. The single strand of RNA acts as a template for RISC to recognize complementary messenger RNA (mRNA) transcript. Once found, one of the proteins in RISC, Argonaute, activates and cleaves the mRNA. This process is called RNA interference (RNAi) and it is found in many eukaryotes; it is a key process in defense against viral infections, as it is triggered by the presence of double-stranded RNA (dsRNA).

In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, sense may have slightly different meanings. For example, DNA is positive-sense if an RNA version of the same sequence is translated or translatable into protein, negative-sense if not.

Systematic evolution of ligands by exponential enrichment

Systematic evolution of ligands by exponential enrichment (SELEX), also referred to as in vitro selection or in vitro evolution, is a combinatorial chemistry technique in molecular biology for producing oligonucleotides of either single-stranded DNA or RNA that specifically bind to a target ligand or ligands. These single-stranded DNA or RNA are commonly referred to as aptamers. Although SELEX has emerged as the most commonly used name for the procedure, some researchers have referred to it as SAAB and CASTing SELEX was first introduced in 1990. In 2015 a special issue was published in the Journal of Molecular Evolution in the honor of quarter century of the SELEX discovery.

Computational gene

A computational gene is a molecular automaton consisting of a structural part and a functional part; and its design is such that it might work in a cellular environment.

Mipomersen

Mipomersen is used to treat homozygous familial hypercholesterolemia and is administered by subcutaneous injection. There is a serious risk of liver damage from this drug and it can only be prescribed in the context of a risk management plan.

RNASEH1

Ribonuclease H1 also known as RNase H1 is an enzyme that in humans is encoded by the RNASEH1 gene. The RNase H1 is a non-specific endonuclease and catalyzes the cleavage of RNA via a hydrolytic mechanism.

Ionis Pharmaceuticals

Ionis Pharmaceuticals is a biotechnology company based in Carlsbad, California that specializes in discovering and developing RNA-targeted therapeutics. The company has 3 commercially approved medicines: Spinraza (Nusinersen), Tegsedi (Inotersen), and Waylivra (Volanesorsen) and has 4 drugs in pivotal studies: tominersen for Huntington’s disease, tofersen for SOD1-ALS, AKCEA-APO(a)-LRx for cardiovascular disease, and AKCEA-TTR-LRx for all forms of TTR amyloidosis.

RNA-dominant diseases are characterized by deleterious mutations that typically result in degenerative disorders affecting various neurological, cardiovascular, and muscular functions. Studies have found that they arise from repetitive non-coding RNA sequences, also known as toxic RNA, which inhibit RNA-binding proteins leading to pathogenic effects. The most studied RNA-dominant diseases include, but are not limited to, myotonic dystrophy and fragile X-associated tremor/ataxia syndrome (FXTAS).

Custirsen Chemical compound

Custirsen, aliases including custirsen sodium, OGX-011, and CC-8490, is an investigational drug that was under clinical testing for the treatment of cancer. It is an antisense oligonucleotide (ASO) targeting clusterin expression. In metastatic prostate cancer, custirsen showed no benefit in improving over all survival.

RNA therapeutics are a class of medications based on ribonucleic acid (RNA).

References

  1. 1 2 3 4 5 6 Crooke, Stanley T.; Baker, Brenda F.; Crooke, Rosanne M.; Liang, Xue-hai (2021-03-24). "Antisense technology: an overview and prospectus". Nature Reviews Drug Discovery: 1–27. doi:10.1038/s41573-021-00162-z. ISSN   1474-1784. PMID   33762737.
  2. 1 2 3 4 5 Dhuri, Karishma; Bechtold, Clara; Quijano, Elias; Pham, Ha; Gupta, Anisha; Vikram, Ajit; Bahal, Raman (2020-06-26). "Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development". Journal of Clinical Medicine. 9 (6): 2004. doi:10.3390/jcm9062004. ISSN   2077-0383. PMC   7355792 . PMID   32604776.
  3. 1 2 QIAGEN. (2017). Antisense LNA GapmeRs Handbook: LNA-optimized oligonucleotides for strand-specific knockdown of mRNA and IncRNA. Germantown, MD: Author
  4. 1 2 3 4 Roberts, Thomas C.; Langer, Robert; Wood, Matthew J. A. (October 2020). "Advances in oligonucleotide drug delivery". Nature Reviews Drug Discovery. 19 (10): 673–694. doi:10.1038/s41573-020-0075-7. ISSN   1474-1784. PMC   7419031 . PMID   32782413. S2CID   221097649.
  5. 1 2 Kasuya, Takeshi; Hori, Shin-ichiro; Watanabe, Ayahisa; Nakajima, Mado; Gahara, Yoshinari; Rokushima, Masatomo; Yanagimoto, Toru; Kugimiya, Akira (2016-07-27). "Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides". Scientific Reports. 6 (1): 30377. Bibcode:2016NatSR...630377K. doi:10.1038/srep30377. ISSN   2045-2322. PMC   4961955 . PMID   27461380.
  6. Cerritelli, Susana M.; Crouch, Robert J. (March 2009). "Ribonuclease H: the enzymes in Eukaryotes". The FEBS Journal. 276 (6): 1494–1505. doi:10.1111/j.1742-4658.2009.06908.x. ISSN   1742-464X. PMC   2746905 . PMID   19228196.
  7. 1 2 Amodio, Nicola; Stamato, Maria Angelica; Juli, Giada; Morelli, Eugenio; Fulciniti, Mariateresa; Manzoni, Martina; Taiana, Elisa; Agnelli, Luca; Cantafio, Maria Eugenia Gallo; Romeo, Enrica; Raimondi, Lavinia (September 2018). "Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity". Leukemia. 32 (9): 1948–1957. doi:10.1038/s41375-018-0067-3. ISSN   1476-5551. PMC   6127082 . PMID   29487387.
  8. Cheng, Xinwei; Liu, Qibing; Li, Hong; Kang, Chen; Liu, Yang; Guo, Tianqi; Shang, Ke; Yan, Chengyun; Cheng, Guang; Lee, Robert J. (2017-02-01). "Lipid Nanoparticles Loaded with an Antisense Oligonucleotide Gapmer Against Bcl-2 for Treatment of Lung Cancer". Pharmaceutical Research. 34 (2): 310–320. doi:10.1007/s11095-016-2063-5. ISSN   1573-904X. PMID   27896589. S2CID   7147120.
  9. 1 2 3 Mipomersen [package insert]. Cambridge, MA: Genzyme Corporation; 2013.
  10. 1 2 Inotersen [package insert]. Carlsbad, CA: Ionis Pharmaceuticals, Inc.; 2018.
  11. 1 2 "Drug Information Portal - U.S. National Library of Medicine - Quick Access to Quality Drug Information". druginfo.nlm.nih.gov. Retrieved 2021-04-29.
  12. Yoshida, Tokuyuki; Naito, Yuki; Yasuhara, Hidenori; Sasaki, Kiyomi; Kawaji, Hideya; Kawai, Jun; Naito, Mikihiko; Okuda, Haruhiro; Obika, Satoshi; Inoue, Takao (2019). "Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells". Genes to Cells. 24 (12): 827–835. doi:10.1111/gtc.12730. ISSN   1365-2443. PMC   6915909 . PMID   31637814.