Garter spring

Last updated
A garter spring inside a rubber seal 0 joint Bal Seal.jpg
A garter spring inside a rubber seal

A garter spring is a coiled steel spring that is connected at each end to create a circular shape, and is used in oil seals, shaft seals, belt-driven motors, and electrical connectors. Compression garter springs exert outward radial forces, while extension garter springs exert inward radial forces. The manufacturing process is similar to the creation of regular coiled springs, with the addition of joining the ends together. Like most other springs, garter springs are typically manufactured with either carbon steel or stainless steel wire.

Contents

Types of Springs

Compression Springs

Compression garter springs are a type of coiled spring that exerts outward radial forces away from the center. They are typically made up of a thick steel wire with large coils; compression springs need to be able to handle very large loads while being able to return to their natural extended position. Compression springs [1] store potential energy when they are compressed (length of spring decreases), and exert kinetic energy when released. Compression garter springs use this principle to withstand forces acting on it from outside. They may be placed inside a circular object to maintain the object's circular shape. This is similar to squeezing a rubber ball; the ball will contract when squeezed but will return to its natural state once the external pressure is released.

Extension Springs

Extension garter springs are on the opposite side of the spring spectrum. Although they are also a type of coiled spring, extension garter springs exert inward radial forces that move toward the center. Extension springs [2] store potential energy in their extended form and want to contract. Thinner wire and a greater number of coils allow extension springs to be able to contract quickly, which is essential when dealing with pressurized fluids and gases. Extension garter springs act against forces from the center, so they may be placed on the outside of a circular object to maintain the object's circular shape. They act similar to a bracelet, which is extended to fit around the hand and then snaps back into shape on the wrist. Extension garter springs are more common than compression garter springs because they use less material (smaller circumference and thinner wire) and they respond to changes quicker and more efficiently.

Manufacturing

Process

There are four main stages for the production of steel garter springs. The first step is to cut and coil reels of steel wire to produce normal coiled springs. The strength of the spring is proportional to the thickness of the wire. Compression springs are coiled in such a way that the coils are more spaced apart, while extension springs have no space between the coils.

The second step is to join each end of the spring to form the garter spring's unique circular shape. This can be accomplished through a few different ways:

The third stage is heat treating, which prevents the spring from being too brittle to function. Heat treating involves placing the spring in an oven at high temperature for a predetermined amount of time, and then letting it cool slowly.

The fourth stage is applying the finishing touches to the spring, which may include grinding (flattening the ends of the spring), shot peening (shooting tiny steel balls at the spring to harden the wire further), setting (permanently fixing the length and pitch of the spring), coating (electroplating or applying paint or rubber to the surface to prevent corrosion), and packaging.

Materials

Carbon steel [3] wire is typically used for garter springs due to its affordable price and usability, in comparison to stainless steel. Carbon steel [3] springs tend to have very high yield strengths, and are able to return to their original shape when temporarily deformed. The carbon content in carbon steel wires range from 0.50 to 0.95 percent. This relatively small amount of carbon is enough to improve the toughness of the spring. The close proximity to oil and high-pressure engines mean heat treated garter springs are essential for enduring temperatures over 100 °C (212 °F). However, carbon steel is not suitable for highly corrosive environments; stainless steel would be a more viable option. Stainless steel differs from carbon steel in the amount of chromium present; stainless steel has between 10.5% to 11% chromium by mass, while carbon steel has about 1%.

Applications

Most garter springs are used for oil seals and shaft seals. [4] Since they are able to withstand forces from all directions, garter springs are effective at handling changes in volume, pressure, temperature, and viscosity. [5]

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES), and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Electromagnet</span> Magnet created with an electric current

An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the hole in the center of the coil. The magnetic field disappears when the current is turned off. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.

<span class="mw-page-title-main">Rebar</span> Steel reinforcement

Rebar, known when massed as reinforcing steel or steel reinforcement, is a tension device added to concrete to form reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar usually consists of steel bars which significantly increase the tensile strength of the structure. Rebar surfaces feature a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

<span class="mw-page-title-main">Spring (device)</span> Elastic object that stores mechanical energy

A spring is a device consisting of an elastic but largely rigid material bent or molded into a form that can return into shape after being compressed or extended. Springs can store energy when compressed. In everyday use, the term most often refers to coil springs, but there are many different spring designs. Modern springs are typically manufactured from spring steel. An example of a non-metallic spring is the bow, made traditionally of flexible yew wood, which when drawn stores energy to propel an arrow.

<span class="mw-page-title-main">Coil spring</span> Mechanical device which stores energy

A coil spring is a mechanical device which is typically used to store energy and subsequently release it, to absorb shock, or to maintain a force between contacting surfaces. They are made of an elastic material formed into the shape of a helix which returns to its natural length when unloaded.

<span class="mw-page-title-main">Gasket</span> Type of mechanical seal

A gasket is a mechanical seal which fills the space between two or more mating surfaces, generally to prevent leakage from or into the joined objects while under compression. It is a deformable material that is used to create a static seal and maintain that seal under various operating conditions in a mechanical assembly.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Induction cooking</span> Direct induction heating of cooking vessels

Induction cooking is a cooking process using direct electrical induction heating of cooking vessels, rather than relying on indirect radiation, convection, or thermal conduction. Induction cooking allows high power and very rapid increases in temperature to be achieved: changes in heat settings are instantaneous.

<span class="mw-page-title-main">Heating element</span> Device that converts electricity into heat

A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule Heating. Heating elements are used in household appliances, industrial equipment, and scientific instruments enabling them to perform tasks such as cooking, warming, or maintaining specific temperatures higher than the ambient.

<span class="mw-page-title-main">Magnetic core</span> Object used to guide and confine magnetic fields

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.

<span class="mw-page-title-main">Orthodontic archwire</span> Wire used in dental braces

An archwire in orthodontics is a wire conforming to the alveolar or dental arch that can be used with dental braces as a source of force in correcting irregularities in the position of the teeth. An archwire can also be used to maintain existing dental positions; in this case it has a retentive purpose.

<span class="mw-page-title-main">Piston ring</span> Part of a reciprocating engine

A piston ring is a metallic split ring that is attached to the outer diameter of a piston in an internal combustion engine or steam engine.

<span class="mw-page-title-main">Glass-to-metal seal</span> Airtight seal which joins glass and metal surfaces

Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.

A retaining ring is a fastener that holds components or assemblies onto a shaft or in a housing/bore when installed - typically in a groove - for one time use only. Once installed, the exposed portion acts as a shoulder which retains the specific component or assembly. Circlips are a type of retaining ring.

<span class="mw-page-title-main">Cartridge heater</span>

A cartridge heater is a tube-shaped, heavy-duty, industrial Joule heating element used in the process heating industry, usually custom manufactured to a specific watt density, based on its intended application. Compact designs are capable of reaching a watt density of up to 50W/cm² while some specialty high temperature designs can reach 100w/cm².

<span class="mw-page-title-main">Metal spinning</span> Metalworking process

Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. Spinning can be performed by hand or by a CNC lathe.

<span class="mw-page-title-main">Metal hose</span>

A metal hose is a flexible metal line element. There are two basic types of metal hose that differ in their design and application: stripwound hoses and corrugated hoses.

<span class="mw-page-title-main">SAE 304 stainless steel</span> Most common stainless steel

SAE 304 stainless steel is the most common stainless steel. It is an alloy of iron, carbon, chromium and nickel. It is an austenitic stainless steel, and is therefore not magnetic. It is less electrically and thermally conductive than carbon steel. It has a higher corrosion resistance than regular steel and is widely used because of the ease in which it is formed into various shapes.

<span class="mw-page-title-main">Arc spring</span> Helical spring which is pre-curved in an arc shape

The arc spring is a special form of coil spring which was originally developed for use in the dual-mass flywheel of internal combustion engine drive trains. The term "arc spring" is used to describe pre-curved or arc-shaped helical compression springs. They have an arc-shaped coil axis.

References

  1. "Compression Spring – Stress and Spring Set". springipedia.com. Retrieved 2018-06-27.
  2. "Extension Springs – About". springipedia.com. Retrieved 2018-06-27.
  3. 1 2 "Classification of Carbon and Low-Alloy Steels :: KEY to METALS Articles". www.keytometals.com. Retrieved 2018-06-27.
  4. "Garter Springs - Custom Spring Fabrication". www.stanleyspring.com. Retrieved 6 November 2018.
  5. "What is a garter spring?". cliffordsprings.com. 16 October 2013. Retrieved 6 November 2018.