Gas chromatography-olfactometry

Last updated

Gas chromatography-olfactometry (GC-O) is a technique that integrates the separation of volatile compounds using a gas chromatograph with the detection of odour using an olfactometer (human assessor). [1] It was first invented and applied in 1964 by Fuller and co-workers. [2] While GC separates volatile compounds from an extract, human olfaction detects the odour activity of each eluting compound. In this olfactometric detection, a human assessor may qualitatively determine whether a compound has odour activity or describe the odour perceived, or quantitatively evaluate the intensity of the odour or the duration of the odour activity. [3] The olfactometric detection of compounds allows the assessment of the relationship between a quantified substance and the human perception of its odour, without instrumental detection limits present in other kinds of detectors. Compound identification still requires use of other detectors, such as mass spectrometry, with analytical standards.

Contents

Olfactory perception

The properties of a compound relating to human olfactory perception includes its odour quality, threshold and intensity as a function of its concentration.

The odour quality of a (odour-active) compound is assessed using odour descriptors in sensory descriptive analyses. [4] It shows the sensory–chemical relationship in volatile compounds. The odour quality of a compound may change with its concentration. [1]

The absolute threshold of a compound is the minimum concentration at which it can be detected. In a mixture of volatile compounds, only the proportion of compounds present at concentrations above their threshold contribute to the odour. This property can be represented by the odour threshold (OT), the minimum concentration at which the odour is perceived by 50% of a human panel without determining its quality, or the recognition threshold, the minimum concentration at which the odour is perceived and can be described by 50% of a human panel. [3]

The intensity of perception of a compound is positively correlated with its concentration. It is represented by the unique psychometric or concentration-response function of the compound. A psychometric function with a log concentration–perceived intensity plot is characterised by its sigmoidal shape, with its initial baseline representing the compound at concentrations below its threshold, a slow rise in response around the inflection point representing the threshold, an exponential rise in response as the concentration exceeds the threshold, a deceleration of the response to a flat region as the zone of saturation or the point at which the change in intensity is no longer perceived is reached. On the other hand, a log concentration–log perceived intensity plot, using Steven's power law, forms a linear line with the exponent characterising the relationship between the two variables. [1]

Experimental design

The apparatus consists of a gas chromatograph equipped with an odour port (ODP), in place of or in addition to conventional detectors, from with human assessors sniff the eluates. The odour port is characterised by its nose-cone design connected to the GC instrument by a transfer line. The odour port is commonly glass or polytetrafluoroethylene. [5] It is generally placed 30–60 cm away from the instrument, extending from the side such that it is not affected by the hot GC oven. The deactivated silica transfer line is generally heated to prevent the condensation of less-volatile compounds. It is flexible so that the assessor can adjust it according to their comfortable sitting position. As traditional warm and dry carrier gases may dehydrate the mucous membrane of the nose, volatiles are delivered via auxiliary gas or humidified carrier gas, with relative humidity (RH) of 50–75%, to ease the dehydration. [1]

The olfactometric detector may be coupled with, or connected in parallel to, a flame ionization detector (FID) or mass spectrometer (MS). Moreover, multiple odour ports may be set-up. In these cases, the eluate is generally split evenly between the detectors to allow it to reach the detectors simultaneously. [5]

Methods of detection

In a GC-O analysis, various methods are used to determine the odour contribution of a compound or the relative importance of each odorant. The methods can be categorised as (i) detection frequency, (ii) dilution to threshold and (iii) direct intensity.

Detection frequency

The GC-O analysis is carried out by a panel of 6–12 assessors to count the number of participants who perceive an odour at each retention time. This frequency is then used to represent the relative importance of an odorant in the extract. It is also presumed to relate to the intensity of the odorant at the particular concentration, based on the assumption that individual detection thresholds are normally distributed. [1]

Two different kinds of data can be reported by this method depending on the data collected. First, if only frequency data is available, it is reported as the nasal impact frequency (NIF) or the peak height of the olfactometric signal. [3] It is zero if no assessor senses the odour and added with one each time an assessor senses an odour. Second, if both frequency of detection and duration of odour are collected, the surface of NIF (SNIF) or the peak area corresponding to the product of frequency of detection (%) and duration of odour (s) can be interpreted. SNIF allows further interpretation of odour compounds other than just peak height.

The detection frequency method benefits from its simplicity and lack of requirement for trained assessors, as the signal recorded is binary (presence/absence of odour). On the other hand, a drawback of this method is the limitation to the assumption of the relationship between frequency and perceived odour intensity. Odour-active compounds in food samples are often present at concentrations above their detection thresholds. This means that a compound may be detected by all assessors and therefore reach the limit of 100% detection in spite of increases in intensity.

Dilution to threshold

A dilution series of a sample or extract is prepared and assessed for presence of odour. The result can be described as the odour potency of a compound.

One kind of analysis is to measure the maximum dilution in the series in which odour is still perceived. The resulting value is called the flavour dilution (FD) factor in the aroma extraction dilution analysis (AEDA) developed in 1987 by Schieberle and Grosch. [6] On the other hand, another kind of analysis is to also measure the duration of the perceived odour to compute peak areas. The peak areas are known as Charm values in the CharmAnalysis developed in 1984 by Acree and co-workers. [7] [8] The former can then be interpreted as the peak height of the latter. Because the odour threshold of a compound is intended to be measured from a prepared series of dilution (commonly by a factor of 2–3 with 8–10 dilutions), the precision and variation in data can be determined from the dilution factors used.

Due to time demand requirements from this method and the general requirement for multiple assessors to minimise errors, having the column split into multiple odour ports would be beneficial for the method.

Direct intensity

This method adds to the dilution to threshold method by considering the perceived intensity of the compounds as well. Assessors can report this based on a predetermined scale.

The posterior intensity method measures the maximum intensity perceived for each eluting compound. A panel of assessors is recommended to be used to obtain an averaged signal. On the other hand, the dynamic time-intensity method measures the intensity at different points in time starting from the time of elution, allowing a continuous measurement of onset, maximum, and decline of the odour intensity. This is used in the Osme (Greek word for odour) method developed in 1992 by Da Silva. [9] An aromagram can then be constructed in a similar way as an FID chromatogram whereby intensity is plotted as a function of retention time. [1] The peak height corresponds to the maximum intensity perceived whereas the peak width corresponds to the duration of the odour perceived.

The time requirement maybe high for this particular method regarding the essentials of assessor training, as lack of training may result in inconsistencies in scale usage. However, with a trained panel of assessors, the analysis can be done in a relatively short amount of time with high precision.

Variations

Related Research Articles

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique in analytical chemistry

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc, which have been dissolved into liquid solutions.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

<span class="mw-page-title-main">Gas chromatography–mass spectrometry</span> Analytical method

Gas chromatography–mass spectrometry (GC–MS) is an analytical method that combines the features of gas-chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC–MS include drug detection, fire investigation, environmental analysis, explosives investigation, food and flavor analysis, and identification of unknown samples, including that of material samples obtained from planet Mars during probe missions as early as the 1970s. GC–MS can also be used in airport security to detect substances in luggage or on human beings. Additionally, it can identify trace elements in materials that were previously thought to have disintegrated beyond identification. Like liquid chromatography–mass spectrometry, it allows analysis and detection even of tiny amounts of a substance.

<span class="mw-page-title-main">Aroma compound</span> Chemical compound that has a smell or odor

An aroma compound, also known as an odorant, aroma, fragrance or flavoring, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

<span class="mw-page-title-main">Ion mobility spectrometry</span> Analytical technique used to separate and identify ionized molecules in the gas phase

Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. Systems operated at higher pressure are often accompanied by elevated temperature, while lower pressure systems (1–20 hPa) do not require heating.

The odor detection threshold is the lowest concentration of a certain odor compound that is perceivable by the human sense of smell. The threshold of a chemical compound is determined in part by its shape, polarity, partial charges, and molecular mass. The olfactory mechanisms responsible for a compound's different detection threshold is not well understood. As such, odor thresholds cannot be accurately predicted. Rather, they must be measured through extensive tests using human subjects in laboratory settings.

<span class="mw-page-title-main">Flame ionization detector</span> Type of gas detector used in gas chromatography

A flame ionization detector (FID) is a scientific instrument that measures analytes in a gas stream. It is frequently used as a detector in gas chromatography. The measurement of ion per unit time make this a mass sensitive instrument. Standalone FIDs can also be used in applications such as landfill gas monitoring, fugitive emissions monitoring and internal combustion engine emissions measurement in stationary or portable instruments.

Grapefruit mercaptan is a natural organic compound found in grapefruit. It is a monoterpenoid that contains a thiol functional group. Structurally a hydroxy group of terpineol is replaced by the thiol in grapefruit mercaptan, so it also called thioterpineol. Volatile thiols typically have very strong, often unpleasant odors that can be detected by humans in very low concentrations. Grapefruit mercaptan has a very potent, but not unpleasant, odor, and it is the chemical constituent primarily responsible for the aroma of grapefruit. This characteristic aroma is a property of only the R enantiomer.

A photoionization detector or PID is a type of gas detector.

<span class="mw-page-title-main">Electronic nose</span> Electronic sensor for odor detection

An electronic nose is an electronic sensing device intended to detect odors or flavors. The expression "electronic sensing" refers to the capability of reproducing human senses using sensor arrays and pattern recognition systems.

The thermal conductivity detector (TCD), also known as a katharometer, is a bulk property detector and a chemical specific detector commonly used in gas chromatography. This detector senses changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas. Since most compounds have a thermal conductivity much less than that of the common carrier gases of helium or hydrogen, when an analyte elutes from the column the effluent thermal conductivity is reduced, and a detectable signal is produced.

<span class="mw-page-title-main">Two-dimensional chromatography</span>

Two-dimensional chromatography is a type of chromatographic technique in which the injected sample is separated by passing through two different separation stages. Two different chromatographic columns are connected in sequence, and the effluent from the first system is transferred onto the second column. Typically the second column has a different separation mechanism, so that bands that are poorly resolved from the first column may be completely separated in the second column. Alternately, the two columns might run at different temperatures. During the second stage of separation the rate at which the separation occurs must be faster than the first stage, since there is still only a single detector. The plane surface is amenable to sequential development in two directions using two different solvents.

<span class="mw-page-title-main">Odor</span> Volatile chemical compounds perceived by the sense of smell

An odor or odour is caused by one or more volatilized chemical compounds that are generally found in low concentrations that humans and many animals can perceive via their sense of smell. An odor is also called a "smell" or a "scent", which can refer to either an unpleasant or a pleasant odor.

<span class="mw-page-title-main">Olfactometer</span> Instrument used to detect and measure odor dilution

An olfactometer is an instrument used to detect and measure odor dilution. Olfactometers are used in conjunction with human subjects in laboratory settings, most often in market research, to quantify and qualify human olfaction. Olfactometers are used to gauge the odor detection threshold of substances. To measure intensity, olfactometers introduce an odorous gas as a baseline against which other odors are compared.

A chromatography detector is a device that detects and quantifies separated compounds as they elute from the chromatographic column. These detectors are integral to various chromatographic techniques, such as gas chromatography, liquid chromatography, and high-performance liquid chromatography, and supercritical fluid chromatography among others. The main function of a chromatography detector is to translate the physical or chemical properties of the analyte molecules into measurable signal, typically electrical signal, that can be displayed as a function of time in a graphical presentation, called a chromatograms. Chromatograms can provide valuable information about the composition and concentration of the components in the sample.

Analytical thermal desorption, known within the analytical chemistry community simply as "thermal desorption" (TD), is a technique that concentrates volatile organic compounds (VOCs) in gas streams prior to injection into a gas chromatograph (GC). It can be used to lower the detection limits of GC methods, and can improve chromatographic performance by reducing peak widths.

Headspace gas chromatography uses headspace gas—from the top or "head" of a sealed container containing a liquid or solid brought to equilibrium—injected directly onto a gas chromatographic column for separation and analysis. In this process, only the most volatile substances make it to the column. The technique is commonly applied to the analysis of polymers, food and beverages, blood alcohol levels, environmental variables, cosmetics, and pharmaceutical ingredients.

The Polyarc reactor is a scientific tool for the measurement of organic molecules. It is paired with a flame ionization detector (FID) in a gas chromatograph (GC) to improve the sensitivity of the FID and give a uniform detector response for all organic molecules (GC-Polyarc/FID).

<span class="mw-page-title-main">Floral scent</span>

Floral scent, or flower scent, is composed of all the volatile organic compounds (VOCs), or aroma compounds, emitted by floral tissue. Other names for floral scent include, aroma, fragrance, floral odour or perfume. Flower scent of most flowering plant species encompasses a diversity of VOCs, sometimes up to several hundred different compounds. The primary functions of floral scent are to deter herbivores and especially folivorous insects, and to attract pollinators. Floral scent is one of the most important communication channels mediating plant-pollinator interactions, along with visual cues.

Gas chromatography–vacuum ultraviolet spectroscopy (GC-VUV) is a universal detection technique for gas chromatography. VUV detection provides both qualitative and quantitative spectral information for most gas phase compounds.

References

  1. 1 2 3 4 5 6 C. M. Delahunty, G. Eyres, J-P. Dufour. (2006). "Gas chromatography-olfactometry". Journal of Separation Science. 29 (14): 2107–2125. doi:10.1002/jssc.200500509. PMID   17069240.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. G. H. Fuller, R. Stellencamp, G. A. Tisserand. (1964). "The gas chromatograph with human sensor: Perfumer model". Annals of the New York Academy of Sciences. 116 (2): 711–724. Bibcode:1964NYASA.116..711F. doi:10.1111/j.1749-6632.1964.tb45106.x. PMID   14220569. S2CID   28039878.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 3 M. Brattoli. (2013). "Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds". Sensors. 13 (12): 16759–16800. Bibcode:2013Senso..1316759B. doi: 10.3390/s131216759 . PMC   3892869 . PMID   24316571.
  4. 1 2 A. J. Johnson, A. K. Hjelmeland, H. Heymann, S. E. Ebeler. (2019). "GC-Recomposition-Olfactometry (GC-R) and multivariate study of three terpenoid compounds in the aroma profile of Angostura bitters". Scientific Reports. 9 (1): 7633. Bibcode:2019NatSR...9.7633J. doi: 10.1038/s41598-019-44064-y . PMC   6529406 . PMID   31113980.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 B. Plutowska, W. Wardencki. (2008). "Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages - A review". Food Chemistry. 107 (1): 449–463. doi:10.1016/j.foodchem.2007.08.058.
  6. P. Schieberle, W. Grosch. (1987). "Evaluation of the flavour of wheat and rye bread crusts by aroma extract dilution analysis". Original Papers. 185 (2): 111–113. doi:10.1007/BF01850088. S2CID   101798597.
  7. T. E. Acree, J. Barnard, D. G. Cunning ham. (1984). "A procedure for the sensory analysis of gas chromatographic effluents". Food Chemistry. 14 (4): 273–286. doi:10.1016/0308-8146(84)90082-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. B. A. Zellner, P. Dugo, G. Dugo, L. Mondello. (2008). "Gas chromatography–olfactometry in food flavour analysis". Journal of Chromatography A. 1186 (1–2): 123–143. doi:10.1016/j.chroma.2007.09.006. PMID   17915233.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. M. A. A. P. Da Silva (1992). Flavor properties and stability of a corn-based snack : aroma profiles by gas chromatography (GC), GC-olfactometry, mass spectrometry, and descriptive sensory analysis (PhD). Oregon State University.
  10. H. Song, J. Liu (2018). "GC-O-MS technique and its applications in food flavor analysis". Food Research International. 114: 187–198. doi:10.1016/j.foodres.2018.07.037. PMID   30361015. S2CID   53100300.
  11. J.L.Berdagué, P.Tournayre, S.Cambou (2007). "Novel multi-gas chromatography–olfactometry device and software for the identification of odour-active compounds". Journal of Chromatography A. 1146 (1): 85–92. doi:10.1016/j.chroma.2006.12.102. PMID   17316657.{{cite journal}}: CS1 maint: multiple names: authors list (link)