Gas flow computer

Last updated

Originally the gas flow computer was a mechanical (1920s technology) or later a pneumatic or hydraulic computing module (1940s technology used to the early 1990s but still available from a number of suppliers), subsequently superseded in most applications by an electronic module, as the primary elements switched from transmitting the measured variables from pneumatic or hydraulic pressure signals to electric current as explosion-proof (1960s technology to present)) and then intrinsically safe (1970s to present) transmitters (with low-power transistor circuitry) became available, that simply provided a dedicated gas flow computer function. Today "gas flow computers" as such have become uncommon, since gas flow computing is a subfunction of a data acquisition and control program implemented with programmable logic controller (PLCs) and remote terminal unit (RTUs); with the rise of smart transmitters in the early 1980s, these functions have also been incorporated within the field transmitters themselves.

Contents

The "gas flow computer" senses a mixed "dry" gas stream flow rate plus gas temperature and pressure. The most common method of measuring gas flow is via differential pressure across an orifice plate inserted into a flow metering pipe.

As the differential pressure is not directly proportional to the gas flow rate, a flow computer algorithm is required to convert the differential pressure reading into a flow rate (may include square root extraction to linearize the input). Since gas is compressible and affected by temperature, the gas temperature and pressure must also be monitored and compared to a specified standard temperature and pressure within the algorithm. This is referred to as volumetric flow measurement.

Next we need to calculate mass flow AGA3 based upon the specific gravity of the gas. Since a natural gas stream contains a mix of various hydrocarbon gases of different specific gravities, mole percentages must be determined via a gas sample analysis. The mixed gas stream will also contain some inert gases such as nitrogen and carbon dioxide. Therefore the gas flow computer also requires the entry of mole percentages for each gas component.

Based on accurate mass flow calculations it becomes possible, based upon the energy content of each gas component, to calculate energy flow, i.e., API 14.5 (GPA 2172) since each gas component contains different energy content. These values in joules (or calories or Btus) are typically built into the gas flow computer algorithm. Therefore energy flow metering is our ultimate goal since this is where the true value is for the client. Also these mineral reserves are taxed based upon energy content. The inert gases such as nitrogen have no value. (Some inert gases actually have negative value, most notably carbon dioxide and hydrogen sulphide, as they require extra equipment to remove from the natural gas, and costs are incurred in their disposal.)

Other input parameters include contract hour as well as location latitude and altitude above sea level, isentropic exponent and type of materials used in the metering device to optimize the accuracy of calculations. In summary the gas flow computer requires approximately 30 initial input parameters in conjunction with "near realtime" gas flow, pressure and temperature sensing.

In addition to providing volumetric, mass and energy flow data, the gas flow computer also provides date and time, instantaneous, hourly and daily data. The gas flow computer typically stores date/time stamped volume records in RAM for up to 35 days in order to provide sufficient time for a host system to retrieve the records as well as to allow time for human intervention if this retrieval fails to occur. The flow computer generally tracks modifications to flow parameters (e.g. orifice plate size or gas analysis data) in an "Audit Trail" that identifies the modified parameter, the time and date of the value change, the old and new values, and may identify the person making the change. The data log format and contents vary slightly by flow computer manufacturer, with all manufacturers designing to a specification outlined by the American Petroleum Institute. [1]

Flow metering accuracy is easily compromised if there are liquids in the gas stream. Therefore methods are implemented to remove liquids from the gas stream before measurement. However a newer V-Cone technology (the inverse of orifice plate technology) is being used to more accurately meter gas that contains some liquids.

See also

Notes and references

  1. American Petroleum Institute, Manual of Petroleum Measurement Standards, Chapter 21, "Electronic Flow Measurement", 1993-1998

Related Research Articles

Cavitation Formation of vapour-filled low-pressure voids in a liquid

Cavitation is a phenomenon in which rapid changes of pressure in a liquid lead to the formation of small vapor-filled cavities, in places where the pressure is relatively low.

Fluid dynamics Aspects of fluid mechanics involving flow

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics and hydrodynamics. Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.

Mach number Ratio of speed of object moving through fluid and local speed of sound

In fluid dynamics, the Mach number is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below:

Venturi effect reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe

The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a constricted section of a pipe. The Venturi effect is named after its discoverer, Giovanni Battista Venturi.

A gas meter is a specialized flow meter, used to measure the volume of fuel gases such as natural gas and liquefied petroleum gas. Gas meters are used at residential, commercial, and industrial buildings that consume fuel gas supplied by a gas utility. Gases are more difficult to measure than liquids, because measured volumes are highly affected by temperature and pressure. Gas meters measure a defined volume, regardless of the pressurized quantity or quality of the gas flowing through the meter. Temperature, pressure, and heating value compensation must be made to measure actual amount and value of gas moving through a meter.

An orifice plate is a device used for measuring flow rate, for reducing pressure or for restricting flow.

Choked flow is a compressible flow effect. The parameter that becomes "choked" or "limited" is the fluid velocity.

A wet gas is any gas with a small amount of liquid present. The term "wet gas" has been used to describe a range of conditions varying from a humid gas which is gas saturated with liquid vapour to a multiphase flow with a 90% volume of gas. There has been some debate as to its actual definition but there is currently no fully defined quantitative definition of a wet gas flow that is universally accepted.

Thermal expansion valve component of air conditioning and refrigeration systems

A thermal expansion valve or thermostatic expansion valve is a component in refrigeration and air conditioning systems that controls the amount of refrigerant released into the evaporator thereby keeping superheat, that is, the difference between the current refrigerant temperature at the evaporator outlet and its saturation temperature at the current pressure, at a stable value, ensuring that the only phase in which the refrigerant leaves the evaporator is vapor, and, at the same time, supplying the evaporator's coils with the optimal amount of liquid refrigerant to achieve the optimal heat exchange rate allowed by that evaporator. In addition, some thermal expansion valves are also specifically designed to ensure that a certain minimum flow of refrigerant can always flow through the system. Thermal expansion valves are often referred to generically as "metering devices" although this may also refer to any other device that releases liquid refrigerant into the low-pressure section but does not react to temperature such as a capillary tube or a pressure-controlled valve.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

A flow computer is an electronic computer which implements algorithms using the analog and digital signals received from flow meters, temperature, pressure and density transmitters to which it is connected into volumes at base conditions. They are used for custody or fiscal transfer.

Positive displacement meter

A positive displacement meter is a type of flow meter that requires fluid to mechanically displace components in the meter in order for flow measurement. Positive displacement (PD) flow meters measure the volumetric flow rate of a moving fluid or gas by dividing the media into fixed, metered volumes. A basic analogy would be holding a bucket below a tap, filling it to a set level, then quickly replacing it with another bucket and timing the rate at which the buckets are filled. With appropriate pressure and temperature compensation, the mass flow rate can be accurately determined.

Custody Transfer in the oil and gas industry refers to the transactions involving transporting physical substance from one operator to another. This includes the transferring of raw and refined petroleum between tanks and tankers; tankers and ships and other transactions. Custody transfer in fluid measurement is defined as a metering point (location) where the fluid is being measured for sale from one party to another. During custody transfer, accuracy is of great importance to both the company delivering the material and the eventual recipient, when transferring a material.

In fluid measurement, the fluid's flow conditions refer to quantities like temperature and static pressure of the metered substance. The flowing conditions are required data in order to calculate the density of the fluid at flowing conditions. The flowing density is in turn required in order to compensate the measured volume to quantity at base conditions.

Instrumentation is used to monitor and control the process plant in the oil, gas and petrochemical industries. Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces.

Measuring instrument Device for measuring a physical quantity

A measuring instrument is a device for measuring a physical quantity. In the physical sciences, quality assurance, and engineering, measurement is the activity of obtaining and comparing physical quantities of real-world objects and events. Established standard objects and events are used as units, and the process of measurement gives a number relating the item under study and the referenced unit of measurement. Measuring instruments, and formal test methods which define the instrument's use, are the means by which these relations of numbers are obtained. All measuring instruments are subject to varying degrees of instrument error and measurement uncertainty. These instruments may range from simple objects such as rulers and stopwatches to electron microscopes and particle accelerators. Virtual instrumentation is widely used in the development of modern measuring instruments.

Flow conditioning ensures that the “real world” environment closely resembles the “laboratory” environment for proper performance of inferential flowmeters like orifice, turbine, coriolis, ultrasonic etc.

Capillary flow porometry, also known as porometry, is a characterization technique based on the displacement of a wetting liquid from the sample pores by applying a gas at increasing pressure. It is widely used to measure minimum, maximum and mean flow pore sizes, and pore size distribution of the through pores in membranes nonwovens, paper, filtration and ultrafiltration media, hollow fibers, ceramics, etc.

In the petroleum industry, allocation refers to practices of breaking down measures of quantities of extracted hydrocarbons across various contributing sources. Allocation aids the attribution of ownerships of hydrocarbons as each contributing element to a commingled flow or to a storage of petroleum may have a unique ownership. Contributing sources in this context are typically producing petroleum wells delivering flows of petroleum or flows of natural gas to a commingled flow or storage.