Generalized helicoid

Last updated
generalized helicoid: meridian is a parabola Schraubflaeche-parabel.svg
generalized helicoid: meridian is a parabola

In geometry, a generalized helicoid is a surface in Euclidean space generated by rotating and simultaneously displacing a curve, the profile curve, along a line, its axis. Any point of the given curve is the starting point of a circular helix. If the profile curve is contained in a plane through the axis, it is called the meridian of the generalized helicoid. Simple examples of generalized helicoids are the helicoids. The meridian of a helicoid is a line which intersects the axis orthogonally.

Contents

Essential types of generalized helicoids are

In mathematics helicoids play an essential role as minimal surfaces. In the technical area generalized helicoids are used for staircases, slides, screws, and pipes.

Analytical representation

screw motion of a point
green: pitch,
blue: screw axis Schraubung-punkt.svg
screw motion of a point
green: pitch,
blue: screw axis

Screw motion of a point

Moving a point on a screwtype curve means, the point is rotated and displaced along a line (axis) such that the displacement is proportional to the rotation-angle. The result is a circular helix.

If the axis is the z-axis, the motion of a point can be described parametrically by

is called slant, the angle , measured in radian, is called the screw angle and the pitch (green). The trace of the point is a circular helix (red). It is contained in the surface of a right circular cylinder. Its radius is the distance of point to the z-axis.

In case of , the helix is called right handed; otherwise, it is said to be left handed. (In case of the motion is a rotation around the z-axis.)

Screw motion of a curve

The screw motion of curve

yields a generalized helicoid with the parametric representation

The curves are circular helices.
The curves are copies of the given profile curve.

Example: For the first picture above, the meridian is a parabola.

Ruled generalized helicoids

right ruled generalized helicoid: closed (left) and open (right) Schraubflaeche-wendel-offen-geschl.svg
right ruled generalized helicoid: closed (left) and open (right)
oblique types: closed (left) and open (right) Schraubflaeche-offen-geschl-rsf.svg
oblique types: closed (left) and open (right)
tangent developable type: definition (left) and example Schraub-torse-def.svg
tangent developable type: definition (left) and example

Types

If the profile curve is a line one gets a ruled generalized helicoid. There are four types:

(1) The line intersects the axis orthogonally. One gets a helicoid (closed right ruled generalized helicoid).
(2) The line intersects the axis, but not orthogonally. One gets an oblique closed type.

If the given line and the axis are skew lines one gets an open type and the axis is not part of the surface (s. picture).

(3) If the given line and the axis are skew lines and the line is contained in a plane orthogonally to the axis one gets a right open type or shortly open helicoid.
(4) If the line and the axis are skew and the line is not contained in ... (s. 3) one gets an oblique open type.

Oblique types do intersect themselves (s. picture), right types (helicoids) do not.

One gets an interesting case, if the line is skew to the axis and the product of its distance to the axis and its slope is exactly . In this case the surface is a tangent developable surface and is generated by the directrix .

Remark:

  1. The (open and closed) helicoids are Catalan surfaces. The closed type (common helicoid) is even a conoid
  2. Ruled generalized helicoids are not algebraic surfaces.

On closed ruled generalized helicoids

on the selfintersection of closed ruled generalized helicoids Regelschraubflaeche-durchd.svg
on the selfintersection of closed ruled generalized helicoids

A closed ruled generalized helicoid has a profile line that intersects the axis. If the profile line is described by one gets the following parametric representation

If (common helicoid) the surface does not intersect itself.
If (oblique type) the surface intersects itself and the curves (on the surface)

with

consist of double points. There exist infinite double curves. The smaller the greater are the distances between the double curves.

On the tangent developable type

tangent developable: regular parts (green and blue) and the directrix (purple) Schraub-torse-2teile-a.svg
tangent developable: regular parts (green and blue) and the directrix (purple)

For the directrix (a helix)

one gets the following parametric representation of the tangent developable surface:

The surface normal vector is

For the normal vector is the null vector. Hence the directrix consists of singular points. The directrix separates two regular parts of the surface (s. picture).

Circular generalized helicoids

meridian is a circle Schraubflaeche-meridiankreis.svg
meridian is a circle
profile curve is a horizontal circle Schraubflaeche-kreis-horiz.svg
profile curve is a horizontal circle

There are 3 interesting types of circular generalized helicoids:

(1) If the circle is a meridian and does not intersect the axis (s. picture).
(2) The plane that contains the circle is orthogonal to the helix of the circle centers. One gets a pipe surface
(3) The circle's plane is orthogonal to the axis and comprises the axis point in it (s. picture). This type was used for baroque-columns.

See also

Related Research Articles

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates determined by distance and angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

In electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.

In physics, angular velocity or rotational velocity, also known as angular frequency vector, is a pseudovector representation of how fast the angular position or orientation of an object changes with time. The magnitude of the pseudovector represents the angular speed, the rate at which the object rotates or revolves, and its direction is normal to the instantaneous plane of rotation or angular displacement. The orientation of angular velocity is conventionally specified by the right-hand rule.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Unit vector</span> Vector of length one

In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Helix</span> Space curve that winds around a line

A helix is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, and many proteins have helical substructures, known as alpha helices. The word helix comes from the Greek word ἕλιξ, "twisted, curved". A "filled-in" helix – for example, a "spiral" (helical) ramp – is a surface called helicoid.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

<span class="mw-page-title-main">Poincaré half-plane model</span> Upper-half plane model of hyperbolic non-Euclidean geometry

In non-Euclidean geometry, the Poincaré half-plane model is the upper half-plane, denoted below as H, together with a metric, the Poincaré metric, that makes it a model of two-dimensional hyperbolic geometry.

<span class="mw-page-title-main">Cardioid</span> Type of plane curve

A cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.

<span class="mw-page-title-main">Ruled surface</span> Surface containing a line through every point

In geometry, a surface S is ruled if through every point of S there is a straight line that lies on S. Examples include the plane, the lateral surface of a cylinder or cone, a conical surface with elliptical directrix, the right conoid, the helicoid, and the tangent developable of a smooth curve in space.

<span class="mw-page-title-main">Conical surface</span>

In geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface.

<span class="mw-page-title-main">Euler's rotation theorem</span> Movement with a fixed point is rotation

In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word line may also refer to a line segment in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it or by a single letter.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

<span class="mw-page-title-main">Conoid</span> Ruled surface made of lines parallel to a plane and intersecting an axis

In geometry a conoid is a ruled surface, whose rulings (lines) fulfill the additional conditions:

<span class="mw-page-title-main">Channel surface</span> Surface formed from spheres centered along a curve

In geometry and topology, a channel or canal surface is a surface formed as the envelope of a family of spheres whose centers lie on a space curve, its directrix. If the radii of the generating spheres are constant, the canal surface is called a pipe surface. Simple examples are:

<span class="mw-page-title-main">Translation surface (differential geometry)</span> Surface generated by translations

In differential geometry a translation surface is a surface that is generated by translations:

References