Tangent developable

Last updated
The tangent developable of a helix Helixtgtdev.png
The tangent developable of a helix

In the mathematical study of the differential geometry of surfaces, a tangent developable is a particular kind of developable surface obtained from a curve in Euclidean space as the surface swept out by the tangent lines to the curve. Such a surface is also the envelope of the tangent planes to the curve.

Contents

Parameterization

Let be a parameterization of a smooth space curve. That is, is a twice-differentiable function with nowhere-vanishing derivative that maps its argument (a real number) to a point in space; the curve is the image of . Then a two-dimensional surface, the tangent developable of , may be parameterized by the map

[1]

The original curve forms a boundary of the tangent developable, and is called its directrix or edge of regression. This curve is obtained by first developing the surface into the plane, and then considering the image in the plane of the generators of the ruling on the surface. The envelope of this family of lines is a plane curve whose inverse image under the development is the edge of regression. Intuitively, it is a curve along which the surface needs to be folded during the process of developing into the plane.

Properties

Tangent developable of a curve with zero torsion. Tangent developable with zero torsion.png
Tangent developable of a curve with zero torsion.

The tangent developable is a developable surface; that is, it is a surface with zero Gaussian curvature. It is one of three fundamental types of developable surface; the other two are the generalized cones (the surface traced out by a one-dimensional family of lines through a fixed point), and the cylinders (surfaces traced out by a one-dimensional family of parallel lines). (The plane is sometimes given as a fourth type, or may be seen as a special case of either of these two types.) Every developable surface in three-dimensional space may be formed by gluing together pieces of these three types; it follows from this that every developable surface is a ruled surface, a union of a one-dimensional family of lines. [2] However, not every ruled surface is developable; the helicoid provides a counterexample.

The tangent developable of a curve containing a point of zero torsion will contain a self-intersection.

History

Tangent developables were first studied by Leonhard Euler in 1772. [3] Until that time, the only known developable surfaces were the generalized cones and the cylinders. Euler showed that tangent developables are developable and that every developable surface is of one of these types. [2]

Notes

  1. Pressley, Andrew (2010), Elementary Differential Geometry, Springer, p. 129, ISBN   1-84882-890-X .
  2. 1 2 Lawrence, Snežana (2011), "Developable surfaces: their history and application", Nexus Network Journal, 13 (3): 701–714, doi: 10.1007/s00004-011-0087-z .
  3. Euler, L. (1772), "De solidis quorum superficiem in planum explicare licet", Novi Commentarii academiae scientiarum Petropolitanae (in Latin), 16: 3–34.

Related Research Articles

Differential geometry Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century.

In mathematics, the tangent space of a manifold facilitates the generalization of vectors from affine spaces to general manifolds, since in the latter case one cannot simply subtract two points to obtain a vector that gives the displacement of the one point from the other.

Tangent straight line touching a point in a curve

In geometry, the tangent line to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the line passes through the point (c, f ) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

Curvature Measure of the property of a curve or a surface to be "bended"

In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.

Vector field Assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. A vector field in the plane, can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

Curve Mathematical idealization of the trace left by a moving point

In mathematics, a curve is an object similar to a line, but that does not have to be straight.

Geodesic Shortest path on a curved surface or a Riemannian manifold

In geometry, a geodesic is commonly a curve representing in some sense the shortest path between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line" to a more general setting.

Algebraic curve Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

Parallel transport Construct in differential geometry

In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.

In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold M where a Minkowski functionalF(x,−) is provided on each tangent space TxM, that enables one to define the length of any smooth curve γ : [a,b] → M as

In Riemannian geometry, the geodesic curvature of a curve measures how far the curve is from being a geodesic. For example, for 1D curves on a 2D surface embedded in 3D space, it is the curvature of the curve projected onto the surface's tangent plane. More generally, in a given manifold , the geodesic curvature is just the usual curvature of . However, when the curve is restricted to lie on a submanifold of , geodesic curvature refers to the curvature of in and it is different in general from the curvature of in the ambient manifold . The (ambient) curvature of depends on two factors: the curvature of the submanifold in the direction of , which depends only on the direction of the curve, and the curvature of seen in , which is a second order quantity. The relation between these is . In particular geodesics on have zero geodesic curvature, so that , which explains why they appear to be curved in ambient space whenever the submanifold is.

Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus.

Affine connection Construct allowing differentiation of tangent vector fields of manifolds

In the branch of mathematics called differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. The notion of an affine connection has its roots in 19th-century geometry and tensor calculus, but was not fully developed until the early 1920s, by Élie Cartan and Hermann Weyl. The terminology is due to Cartan and has its origins in the identification of tangent spaces in Euclidean space Rn by translation: the idea is that a choice of affine connection makes a manifold look infinitesimally like Euclidean space not just smoothly, but as an affine space.

Envelope (mathematics) Family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

Differentiable manifold Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a linear space to allow one to do calculus. Any manifold can be described by a collection of charts, also known as an atlas. One may then apply ideas from calculus while working within the individual charts, since each chart lies within a linear space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

Surface (mathematics) Mathematical idealization of the surface of a body

In mathematics, a surface is a generalization of a plane, which is not necessarily flat – that is, the curvature is not necessarily zero. This is analogous to a curve generalizing a straight line. There are many more precise definitions, depending on the context and the mathematical tools that are used to analyze the surface.

In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space, refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by Alexander Grothendieck (1961). Hironaka's example shows that non-projective varieties need not have Hilbert schemes.

Differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

Total curvature

In mathematical study of the differential geometry of curves, the total curvature of an immersed plane curve is the integral of curvature along a curve taken with respect to arc length:

The terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read. This article lists some of this classical terminology, and describes some of the changes in conventions.

References