This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Gennady Simeonovich Osipov (October 13, 1948 - 07 July 2020) was a Russian scientist, holding a Ph.D. and a Dr. Sci. in theoretical computer science, information technologies and artificial intelligence. He was the vice-president of the Institute for Systems Analysis of the Russian Academy of Sciences, professor at the Moscow Institute of Physics and Technology (State University), and at Bauman Moscow State Technical University. Osipov has contributed to the Theory of Dynamic Intelligent Systems and heterogeneous semantic networks used in applied intelligent systems.
Seventh time President of Russian Association for Artificial Intelligence. In 1997-1999, 1999–2001, 2001–2003 Gennady Osipov received Governmental Grants for Outstanding Scholars by the Decree of the President of Russian Federation. Osipov is a member of the Russian Academy of Natural Sciences and of the Academy of Astronautics of Tsiolkovsky, Fellow of European Coordinating Committee for Artificial Intelligence (ECCAI fellow) and the vice-editor in chief of the “Artificial Intelligence and Decision Making” journal.
Osipov's work in Knowledge Acquisition fields has resulted in the Direct Knowledge Acquisition Method which integrates Knowledge Acquisition Methods by means of date, texts, and human experts. In 1998 Osipov designed the Theory of Dynamic Intelligent System, investigated the behaviour of Dynamic Intelligent Systems, and described classes of this type of Systems.
Osipov is the creator of the relational-situational model of text analysis, used in semantic search engines. He is the author of 120 articles, 5 monographs, 2 manuals, and 2 patents. He is one of the patentees of the Semantic search engine EXACTUS.
In the 2008 Russian Search Engine competition EXACTUS took first place in precision and completeness.
John Florian Sowa is an American computer scientist, an expert in artificial intelligence and computer design, and the inventor of conceptual graphs.
In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.
Computational semiotics is an interdisciplinary field that applies, conducts, and draws on research in logic, mathematics, the theory and practice of computation, formal and natural language studies, the cognitive sciences generally, and semiotics proper. The term encompasses both the application of semiotics to computer hardware and software design and, conversely, the use of computation for performing semiotic analysis. The former focuses on what semiotics can bring to computation; the latter on what computation can bring to semiotics.
Swarm intelligence (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. The expression was introduced by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems.
A blackboard system is an artificial intelligence approach based on the blackboard architectural model, where a common knowledge base, the "blackboard", is iteratively updated by a diverse group of specialist knowledge sources, starting with a problem specification and ending with a solution. Each knowledge source updates the blackboard with a partial solution when its internal constraints match the blackboard state. In this way, the specialists work together to solve the problem. The blackboard model was originally designed as a way to handle complex, ill-defined problems, where the solution is the sum of its parts.
Vasant G. Honavar is an Indian born American computer scientist, and artificial intelligence, machine learning, big data, data science, causal inference, knowledge representation, bioinformatics and health informatics researcher and professor.
Grammar induction is the process in machine learning of learning a formal grammar from a set of observations, thus constructing a model which accounts for the characteristics of the observed objects. More generally, grammatical inference is that branch of machine learning where the instance space consists of discrete combinatorial objects such as strings, trees and graphs.
In the semantic web, Simple HTML Ontology Extensions are a small set of HTML extensions designed to give web pages semantic meaning by allowing information such as class, subclass and property relationships.
Terminology extraction is a subtask of information extraction. The goal of terminology extraction is to automatically extract relevant terms from a given corpus.
Computational humor is a branch of computational linguistics and artificial intelligence which uses computers in humor research. It is a relatively new area, with the first dedicated conference organized in 1996.
Lawrence E. Hunter is a Professor and Director of the Center for Computational Pharmacology and of the Computational Bioscience Program at the University of Colorado School of Medicine and Professor of Computer Science at the University of Colorado Boulder. He is an internationally known scholar, focused on computational biology, knowledge-driven extraction of information from the primary biomedical literature, the semantic integration of knowledge resources in molecular biology, and the use of knowledge in the analysis of high-throughput data, as well as for his foundational work in computational biology, which led to the genesis of the major professional organization in the field and two international conferences.
The knowledge acquisition bottleneck is perhaps the major impediment to solving the word sense disambiguation (WSD) problem. Unsupervised learning methods rely on knowledge about word senses, which is barely formulated in dictionaries and lexical databases. Supervised learning methods depend heavily on the existence of manually annotated examples for every word sense, a requisite that can so far be met only for a handful of words for testing purposes, as it is done in the Senseval exercises.
Dr. Robert L. Simpson Jr. is a computer scientist whose primary research interest is applied artificial intelligence. He served as Chief Scientist at Applied Systems Intelligence, Inc. (ASI) working with Dr. Norman D. Geddes, CEO. Dr. Simpson was responsible for the creation of the ASI core technology PreAct. ASI has since changed its name to Veloxiti Inc.
William Aaron Woods, generally known as Bill Woods, is a researcher in natural language processing, continuous speech understanding, knowledge representation, and knowledge-based search technology. He is currently a Software Engineer at Google.
Paul Compton is an Emeritus Professor at the University of New South Wales (UNSW). He was also the former Head of the UNSW School of Computer Science and Engineering. He is known for proposing "ripple-down rules".
The Knowledge Engineering and Machine Learning group (KEMLg) is a research group belonging to the Technical University of Catalonia (UPC) – BarcelonaTech. It was founded by Prof. Ulises Cortés. The group has been active in the Artificial Intelligence field since 1986.
This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.