Geodispersal

Last updated

In biogeography, geodispersal is the erosion of barriers to gene flow and biological dispersal (Lieberman, 2005.; [1] Albert and Crampton, 2010. [2] ). Geodispersal differs from vicariance, which reduces gene flow through the creation of geographic barriers. [3] In geodispersal, the geographical ranges of individual taxa, or of whole biotas, are merged by erosion of a physical barrier to gene flow or dispersal. [4] Multiple related geodispersal and vicariance events can be mutually responsible for differences among populations. [5] As these geographic barriers break down, organisms of the secluded ecosystems can interact, allowing gene flow between previously separated species, creating more biological variation within a region. [6]

A well documented example of geodispersal in between continental ecosystems was the Great American Biotic Interchange (GABI) between the terrestrial faunas and floras of North America and South America, that followed the formation of the Isthmus of Panama about 3 million years ago. Between 69 and 47 million years ago, the Thulean Land Bridge facilitated gene flow by allowing bees from the Old World to travel to the New World, an example of geodispersal from the Old World to the New World. [7] Another example was the formation of the modern Amazon River Basin about 10 million years ago, [8] which involved the merging of previously isolated Neotropical fish faunas to form what is now the most species-rich continental aquatic ecosystem on Earth (Oberdorff et al., 2011). [9]

Notes and references

  1. Lieberman, Bruce S (2005). "Geobiology and paleobiogeography: Tracking the coevolution of the Earth and its biota". Palaeogeography, Palaeoclimatology, Palaeoecology. 219 (1–2): 23–33. Bibcode:2005PPP...219...23L. doi:10.1016/j.palaeo.2004.10.012.
  2. Albert, J. S. (2010). "The Geography and Ecology of Diversification in Neotropical Freshwaters". Nature Education Knowledge. 1 (10): 13.
  3. Ali, Syed Shujait; Pfosser, Martin; Wetschnig, Wolfgang; Martínez-Azorín, Mario; Crespo, Manuel B.; Yu, Yan (October 2013). "Out of Africa: Miocene Dispersal, Vicariance, and Extinction within Hyacinthaceae Subfamily Urgineoideae: Dispersals in Urgineoideae". Journal of Integrative Plant Biology. 55 (10): 950–964. doi:10.1111/jipb.12065. PMID   23675765.
  4. James S. Albert; Roberto E. Reis (8 March 2011). Historical Biogeography of Neotropical Freshwater Fishes. University of California Press. p. 308. ISBN   9780520268685 . Retrieved 28 June 2011.
  5. Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E. (2011). "Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness". Animals. 1 (2): 205–241. doi: 10.3390/ani1020205 . PMC   4513461 . PMID   26486313.
  6. Bartáková, Veronika; Reichard, Martin; Blažek, Radim; Polačik, Matej; Bryja, Josef (2015). "Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna". Journal of Biogeography. 42 (10): 1832–1844. doi:10.1111/jbi.12567. S2CID   83273062.
  7. Praz, Christophe J; Packer, Laurence (2014). "Phylogenetic position of the bee genera Ancyla and Tarsalia (Hymenoptera: Apidae): A remarkable base compositional bias and an early Paleogene geodispersal from North America to the Old World". Molecular Phylogenetics and Evolution. 81: 258–70. doi:10.1016/j.ympev.2014.09.003. PMID   25238948.
  8. Hoorn, Carina; Wesselingh, Frank (5 January 2010). Amazonia, Landscape and Species Evolution: A Look into the Past. Wiley. ISBN   9781444306415.
  9. Oberdorff, Thierry; Tedesco, Pablo A; Hugueny, Bernard; Leprieur, Fabien; Beauchard, Olivier; Brosse, Sébastien; Dürr, Hans H (2011). "Global and Regional Patterns in Riverine Fish Species Richness: A Review". International Journal of Ecology. 2011: 1–12. doi: 10.1155/2011/967631 . hdl: 10067/897300151162165141 .

Related Research Articles

<span class="mw-page-title-main">Neotropical realm</span> One of Earths eight biogeographic realms

The Neotropical realm is one of the eight biogeographic realms constituting Earth's land surface. Physically, it includes the tropical terrestrial ecoregions of the Americas and the entire South American temperate zone.

<span class="mw-page-title-main">Biogeography</span> Study of the distribution of species and ecosystems in geographic space and through geological time

Biogeography is the study of the distribution of species and ecosystems in geographic space and through geological time. Organisms and biological communities often vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area. Phytogeography is the branch of biogeography that studies the distribution of plants. Zoogeography is the branch that studies distribution of animals. Mycogeography is the branch that studies distribution of fungi, such as mushrooms.

Phylogeography is the study of the historical processes that may be responsible for the past to present geographic distributions of genealogical lineages. This is accomplished by considering the geographic distribution of individuals in light of genetics, particularly population genetics.

Allopatric speciation – also referred to as geographic speciation, vicariant speciation, or its earlier name the dumbbell model – is a mode of speciation that occurs when biological populations become geographically isolated from each other to an extent that prevents or interferes with gene flow.

<span class="mw-page-title-main">Amazon basin</span> Major drainage basin in South America drained via the Amazon River into the Atlantic Ocean

The Amazon basin is the part of South America drained by the Amazon River and its tributaries. The Amazon drainage basin covers an area of about 7,000,000 km2 (2,700,000 sq mi), or about 35.5 percent of the South American continent. It is located in the countries of Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Suriname, and Venezuela, as well as the territory of French Guiana.

<span class="mw-page-title-main">Biological dispersal</span> Movement of individuals from their birth site to a breeding site

Biological dispersal refers to both the movement of individuals from their birth site to their breeding site, as well as the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, settlement and there are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences both for evolutionary strategies at a species level, and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines expansion range.

<span class="mw-page-title-main">Endemism</span> Species unique to a natural location or habitat

Endemism is the state of a species only being found in a single defined geographic location, such as an island, state, nation, country or other defined zone; organisms that are indigenous to a place are not endemic to it if they are also found elsewhere. For example, the Cape sugarbird is found exclusively in southwestern South Africa and is therefore said to be endemic to that particular part of the world. An endemic species can also be referred to as an endemism or, in scientific literature, as an endemite.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

Insular biogeography or island biogeography is a field within biogeography that examines the factors that affect the species richness and diversification of isolated natural communities. The theory was originally developed to explain the pattern of the species–area relationship occurring in oceanic islands. Under either name it is now used in reference to any ecosystem that is isolated due to being surrounded by unlike ecosystems, and has been extended to mountain peaks, seamounts, oases, fragmented forests, and even natural habitats isolated by human land development. The field was started in the 1960s by the ecologists Robert H. MacArthur and E. O. Wilson, who coined the term island biogeography in their inaugural contribution to Princeton's Monograph in Population Biology series, which attempted to predict the number of species that would exist on a newly created island.

<span class="mw-page-title-main">Molecular ecology</span> Field of evolutionary biology

Molecular ecology is a field of evolutionary biology that is concerned with applying molecular population genetics, molecular phylogenetics, and more recently genomics to traditional ecological questions. It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. These fields are united in their attempt to study genetic-based questions "out in the field" as opposed to the laboratory. Molecular ecology is related to the field of conservation genetics.

<span class="mw-page-title-main">Stream capture</span> Geomorphological phenomenon

Stream capture, river capture, river piracy or stream piracy is a geomorphological phenomenon occurring when a stream or river drainage system or watershed is diverted from its own bed, and flows instead down the bed of a neighbouring stream. This can happen for several reasons, including:

<span class="mw-page-title-main">Latitudinal gradients in species diversity</span> Global increase in species richness from polar regions to tropics

Species richness, or biodiversity, increases from the poles to the tropics for a wide variety of terrestrial and marine organisms, often referred to as the latitudinal diversity gradient. The latitudinal diversity gradient is one of the most widely recognized patterns in ecology. It has been observed to varying degrees in Earth's past. A parallel trend has been found with elevation, though this is less well-studied.

<i>The Theory of Island Biogeography</i> 1967 book by Robert MacArthur and Edward O. Wilson

The Theory of Island Biogeography is a 1967 book by the ecologist Robert MacArthur and the biologist Edward O. Wilson. It is widely regarded as a seminal work in island biogeography and ecology. The Princeton University Press reprinted the book in 2001 as a part of the "Princeton Landmarks in Biology" series. The book popularized the theory that insular biota maintain a dynamic equilibrium between immigration and extinction rates. The book also popularized the concepts and terminology of r/K selection theory.

A paraspecies is a species, living or fossil, that gave rise to one or more daughter species without itself becoming extinct. Geographically widespread species that have given rise to one or more daughter species as peripheral isolates without themselves becoming extinct are examples of paraspecies.

Tropical ecology is the study of the relationships between the biotic and abiotic components of the tropics, or the area of the Earth that lies between the Tropic of Cancer and the Tropic of Capricorn. The tropical climate experiences hot, humid weather and rainfall year-round. While many might associate the region solely with the rainforests, the tropics are home to a wide variety of ecosystems that boast a great wealth of biodiversity, from exotic animal species to seldom-found flora. Tropical ecology began with the work of early English naturalists and eventually saw the establishment of research stations throughout the tropics devoted to exploring and documenting these exotic landscapes. The burgeoning ecological study of the tropics has led to increased conservation education and programs devoted to the climate.

<span class="mw-page-title-main">Body size and species richness</span>

The body size-species richness distribution is a pattern observed in the way taxa are distributed over large spatial scales. The number of species that exhibit small body size generally far exceed the number of species that are large-bodied. Macroecology has long sought to understand the mechanisms that underlie the patterns of biodiversity, such as the body size-species richness pattern.

<span class="mw-page-title-main">Ecological fitting</span> Biological process

Ecological fitting is "the process whereby organisms colonize and persist in novel environments, use novel resources or form novel associations with other species as a result of the suites of traits that they carry at the time they encounter the novel condition". It can be understood as a situation in which a species' interactions with its biotic and abiotic environment seem to indicate a history of coevolution, when in actuality the relevant traits evolved in response to a different set of biotic and abiotic conditions.

<span class="mw-page-title-main">Neotropical fish</span>

The freshwater fish of tropical South and Central America, represent one of the most diverse and extreme aquatic ecosystems on Earth, with more than 5,600 species, representing about 10% all living vertebrate species. The exceptional diversity of species, adaptations, and life histories observed in the Neotropical ichthyofauna has been the focus of numerous books and scientific papers, especially the wonderfully complex aquatic ecosystems of the Amazon Basin and adjacent river basins. Many of the advances in Neotropical ichthyology have been summarized in three edited volumes: Malabarba et al. (1998); Reis et al. (2003); Albert and Reis (2011).

<span class="mw-page-title-main">Biogeography of paravian dinosaurs</span> Geographic distribution of paravian dinosaurs

The biogeography of Paravian dinosaurs is the study of the global distribution of Paraves through geological history. Paraves is a clade that includes all of the Theropoda that are more closely related to birds than to oviraptorosaurs. These include Dromaeosauridae and Troodontidae and Avialae. The distribution of paraves is closely related to the evolution of the clade. Understanding the changes in their distributions may shed light on problems like how and why paraves evolve, eventually gaining the ability to fly.

Biotic interchange is the process by which species from one biota invade another biota, usually due to the disappearance of a previously impassable barrier. These dispersal barriers can be physical, climatic, or biological and can include bodies of water or ice, land features like mountains, climate zones, or competition between species. Biotic interchange has been documented to occur in marine, freshwater, and terrestrial environments.