A geomagnetic excursion, like a geomagnetic reversal , is a significant change in the Earth's magnetic field. Unlike reversals, an excursion is not a long-term re-orientation of the large-scale field, but rather represents a dramatic, typically a (geologically) short-lived change in field intensity, with a variation in pole orientation of up to 45° from the previous position. [1]
Excursion events typically only last a few thousand to a few tens of thousands of years, and often involve declines in field strength to between 0 and 20% of normal. Unlike full reversals, excursions are generally not recorded around the entire globe. This is certainly due in part to them not registering well in the sedimentary record, but it also seems likely that excursions may not typically extend through the entire global geomagnetic field. [1] There are significant exceptions, however. [a]
Except for recent periods of the geologic past, it is not well known how frequently geomagnetic excursions occur. Unlike geomagnetic reversals, which are easily detected by the change in field direction, the relatively short-lived excursions can be easily overlooked in long-duration, coarse-resolution records of the past geomagnetic field. Present knowledge suggests that they are around ten times more abundant than reversals, with up to 12 excursions documented since the last reversal, Brunhes–Matuyama: these excursions during the Brunhes geomagnetic chron are relatively well described. [4]
Geomagnetic excursions in the Matuyama, Gauss and Gilbert chrons are also reported and new possible excursions are suggested for these chrons based on analysis of the deep drilling cores from Lake Baikal and their comparison with the oceanic core (ODP) and Chinese loess records. [5]
Scientific opinion is divided on what causes geomagnetic excursions. The dominant hypothesis is that they are an inherent instability of the dynamo processes that generates the magnetic field. [3] Others suggest that excursions occur when the magnetic field is reversed only within the liquid outer core, and complete reversals would occur when the outer and inner core are both affected. [1]
The most popular hypothesis is that they are an inherent aspect of the dynamo processes that maintain the Earth's magnetic field. In computer simulations, it is observed that magnetic field lines can sometimes become tangled and disorganized through the chaotic motions of liquid metal in the Earth's core. In such cases, this spontaneous disorganization can cause decreases in the magnetic field as perceived at the Earth's surface. [b]
This scenario is supported by observed tangling and spontaneous disorganization in the solar magnetic field (the 22 or 11 year solar cycle). However, the equivalent process in the sun invariably leads to a reversal of the solar magnetic field: It has never been observed to recover without a full-scale change in its orientation.
The work of David Gubbins suggests that excursions occur when the magnetic field is reversed only within the liquid outer core; reversals occur when the inner core is also affected. [1] This fits well with observations of events within the current chron of reversals taking 3,000–7,000 years to complete, while excursions typically last 500–3,000 years. However, this timescale does not hold true for all events, and the need for separate generation of fields has been contested, since the changes can be spontaneously generated in mathematical models.
A minority opinion, held by such figures as Richard A. Muller, is that geomagnetic excursions are not spontaneous processes but rather triggered by external events which directly disrupt the flow in the Earth's core. Such processes may include the arrival of continental slabs carried down into the mantle by the action of plate tectonics at subduction zones, the initiation of new mantle plumes from the core–mantle boundary, and possibly mantle-core shear forces and displacements resulting from very large impact events. Supporters of this theory hold that any of these events lead to a large scale disruption of the dynamo, effectively turning off the geomagnetic field for a period of time necessary for it to recover.[ citation needed ]
Richard A. Muller and Donald E. Morris suggest some geomagnetic reversals may be caused by very large impact events and following rapid climate change. In this theory, the impact triggers a little ice age, and water redistribution toward the poles alters the rotation rate of crust and mantle. If the sea-level change is sufficiently large (>10 meters) and rapid (within a few hundred years), the velocity shear in the liquid core disrupts the convective cells that drive the Earth's dynamo. [6]
This section possibly contains original research .(March 2010) |
Due to the weakening of the magnetic field, particularly during the transition period, more radiation would reach the Earth's surface, increasing production of beryllium 10 and levels of carbon 14. [7] However, it is likely that nothing serious would occur, as Homo erectus and possibly Homo heidelbergensis lived through the Brunhes–Matuyama reversal with no known ill effect, and excursions are shorter and do not result in permanent changes to the magnetic field.
The major hazard to modern society is likely to be similar to that of geomagnetic storms, where satellites and power supplies may be damaged, and compass navigation would also be affected. Some forms of life that are thought to navigate based on magnetic fields may be disrupted, but these species have also survived past excursions. Since excursion periods are not always global, any effect might be experienced only in certain places, with others relatively unaffected. The time involved could be as little as a century, or as much as 10000 years.
There is evidence that geomagnetic excursions are associated with episodes of rapid short-term climatic cooling during periods of continental glaciation (ice ages). [8]
Recent analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ~13 Myr during most of the time. [9]
Geophysics is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. Geophysicists, who usually study geophysics, physics, or one of the Earth sciences at the graduate level, complete investigations across a wide range of scientific disciplines. The term geophysics classically refers to solid earth applications: Earth's shape; its gravitational, magnetic fields, and electromagnetic fields ; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations and pure scientists use a broader definition that includes the water cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial physics; and analogous problems associated with the Moon and other planets.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
In physics, the dynamo theory proposes a mechanism by which a celestial body such as Earth or a star generates a magnetic field. The dynamo theory describes the process through which a rotating, convecting, and electrically conducting fluid can maintain a magnetic field over astronomical time scales. A dynamo is thought to be the source of the Earth's magnetic field and the magnetic fields of Mercury and the Jovian planets.
Paleomagnetism is the study of prehistoric Earth's magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called paleomagnetists.
A planetary core consists of the innermost layers of a planet. Cores may be entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% to 85% of a planet's radius (Mercury).
The Brunhes–Matuyama reversal, named after Bernard Brunhes and Motonori Matuyama, was a geologic event, approximately 781,000 years ago, when the Earth's magnetic field last underwent reversal. Estimations vary as to the abruptness of the reversal. A 2004 paper estimated that it took over several thousand years; a 2010 paper estimated that it occurred more quickly, perhaps within a human lifetime; a 2019 paper estimated that the reversal lasted 22,000 years.
A geomagnetic reversal is a change in a planet's dipole magnetic field such that the positions of magnetic north and magnetic south are interchanged. The Earth's magnetic field has alternated between periods of normal polarity, in which the predominant direction of the field was the same as the present direction, and reverse polarity, in which it was the opposite. These periods are called chrons.
Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 20% of Earth's radius or 70% of the Moon's radius.
The Australasian strewnfield is the youngest and largest of the tektite strewnfields, with recent estimates suggesting it might cover 10%–30% of the Earth's surface. Research indicates that the impact forming the tektites occurred around 788,000 years ago, most likely in Southeast Asia. The probable location of the crater is unknown and has been the subject of multiple competing hypotheses.
The Gauss–Matuyama Reversal was a geologic event approximately 2.58 Ma when the Earth's magnetic field underwent a geomagnetic reversal from normal polarity to reverse polarity. The reversal is named after German physicist Johann Carl Friedrich Gauss and Japanese geophysicist Motonori Matuyama.
Antoine Joseph Bernard Brunhes was a French geophysicist known for his pioneering work in paleomagnetism, in particular, his 1906 discovery of geomagnetic reversal. The current period of normal polarity, Brunhes Chron, and the Brunhes–Matuyama reversal are named for him.
Motonori Matuyama was a Japanese geophysicist who was the first to provide systematic evidence that the Earth's magnetic field had been reversed in the early Pleistocene and to suggest that long periods existed in the past in which the polarity was reversed. He remarked that the Earth's field had later changed to the present polarity. The era of reversed polarity preceding the current Brunhes Chron of normal polarity is now called the Matuyama Reversed Chron; and the transition between them is called the Brunhes–Matuyama or Matuyama-Brunhes reversal.
The Jaramillo reversal was a reversal and excursion of the Earth's magnetic field that occurred approximately one million years ago. In the geological time scale it was a "short-term" positive reversal in the then-dominant Matuyama reversed magnetic chronozone; its beginning is widely dated to 990,000 years before the present (BP), and its end to 950,000 BP.
Magnetostratigraphy is a geophysical correlation technique used to date sedimentary and volcanic sequences. The method works by collecting oriented samples at measured intervals throughout the section. The samples are analyzed to determine their characteristic remanent magnetization (ChRM), that is, the polarity of Earth's magnetic field at the time a stratum was deposited. This is possible because volcanic flows acquire a thermoremanent magnetization and sediments acquire a depositional remanent magnetization, both of which reflect the direction of the Earth's field at the time of formation. This technique is typically used to date sequences that generally lack fossils or interbedded igneous rock. It is particularly useful in high-resolution correlation of deep marine stratigraphy where it allowed the validation of the Vine–Matthews–Morley hypothesis related to the theory of plate tectonics.
Geomagnetic secular variation refers to changes in the Earth's magnetic field on time scales of about a year or more. These changes mostly reflect changes in the Earth's interior, while more rapid changes mostly originate in the ionosphere or magnetosphere.
The following outline is provided as an overview of and topical guide to geophysics:
The Laschamp or Laschamps event[note 1] was a geomagnetic excursion. It occurred between 42,200 and 41,500 years ago, during the end of the Last Glacial Period. It was discovered from geomagnetic anomalies found in the Laschamps and Olby lava flows near Clermont-Ferrand, France in the 1960s.
Magnetic field reversal may refer to:
The magnetic field of Mars is the magnetic field generated from Mars's interior. Today, Mars does not have a global magnetic field. However, Mars did power an early dynamo that produced a strong magnetic field 4 billion years ago, comparable to Earth's present surface field. After the early dynamo ceased, a weak late dynamo was reactivated ~3.8 billion years ago. The distribution of Martian crustal magnetism is similar to the Martian dichotomy. Whereas the Martian northern lowlands are largely unmagnetized, the southern hemisphere possesses strong remanent magnetization, showing alternating stripes. Scientific understanding of the evolution of the magnetic field of Mars is based on the combination of satellite measurements and Martian ground-based magnetic data.