Gijswijt's sequence

Last updated

In mathematics, Gijswijt's sequence (named after Dion Gijswijt by Neil Sloane [1] ) is a self-describing sequence where each term counts the maximum number of repeated blocks of numbers in the sequence immediately preceding that term.

Contents

The sequence begins with:

1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, ... (sequence A090822 in the OEIS )

The sequence is similar in definition to the Kolakoski sequence, but instead of counting the longest run of single terms, the sequence counts the longest run of blocks of terms of any length. Gijswijt's sequence is known for its remarkably slow rate of growth. For example, the first 4 appears at the 220th term, and the first 5 appears near the rd term. [1]

Definition

The process to generate terms in the sequence can be defined by looking at the sequence as a series of letters in the alphabet of natural numbers:

  1. , and
  2. , where is the largest natural number such that the word can be written in the form for some words and , with having non-zero length.

The sequence is base-agnostic. That is, if a run of 10 repeated blocks is found, the next term in the sequence would be a single number 10, not a 1 followed by a 0.

Explanation

The sequence begins with 1 by definition. The 1 in the second term then represents the length 1 of the block of 1s that is found immediately before it in the first term. The 2 in the third term represents the length 2 of the block of 1s that are in the first and second term. At this point, the sequence decreases for the first time: The 1 in the fourth term represents the length 1 of the block of 2s in the 3rd term, as well as the length 1 of the block "1, 2" spanning the second and third term. There is no block of any repeated sequence immediately preceding the fourth term that is longer than length 1. The block of two 1s in the first and second term cannot be considered for the 4th term because they are separated by a different number in the 3rd term.

The 1 in the fifth term represents the length 1 of the "repeating" blocks "1" and "2, 1" and "1, 2, 1" and "1, 1, 2, 1" that immediately precede the fifth term. None of these blocks are repeated more than once, so the fifth term is 1. The 2 in the sixth term represents the length of the repeated block of 1s immediately leading up to the sixth term, namely the ones in the 4th and 5th terms. The 2 in the seventh term represents the 2 repetitions of the block "1, 1, 2" spanning terms 1-3 and then 4–6. This "3-number word" occurs twice immediately leading up to the seventh term - so the value of the seventh term is 2.

The 2 in the eighth term represents the length of the repeated block of 2s immediately leading up to the eighth term, namely the twos in the sixth and seventh terms. The 3 in the 9th term represents the thrice-repeated block of single 2s immediately leading up to the 9th term, namely the twos in the sixth, seventh, and eighth terms.

Properties

Only limited research has focused on Gijswijt's sequence. As such, very little has been proven about the sequence and many open questions remain unsolved.

Average value

Though it is known that each natural number occurs at a finite position within the sequence, it has been shown that the sequence has a finite mean. To define this formally on an infinite sequence, where re-ordering of the terms may matter, it is known that

. [1]

Likewise, it is known that any natural number has a positive density in the sequence. [2]

Rate of growth and first occurrences

In 2006 Gijswijt proved that the sequence contains every natural number. [3] The sequence grows roughly super-logarithmically, with the first occurrence of any natural positioned at approximately . A closed-form expression for the earliest index at which a given positive integer appears was found by Levi van de Pol, in terms of a constant and a sequence of constants . [2]

For example, the position of the first 5 is given by

where . Expanded out, this number is approximately

.

The first instance of two consecutive 4's starts at position

255,895,648,634,818,208,370,064,452,304,769,558,261,700,170,817,472,823,
398,081,655,524,438,021,806,620,809,813,295,008,281,436,789,493,636,144.

These numbers both have 108 digits, and were first published by van de Pol.

Recursive structure

The sequence can be broken into discrete "block" and "glue" sequences, which can be used to recursively build up the sequence. For example, at the base level, we can define and as the first block and glue sequences, respectively. Together, we can see how they form the beginning of the sequence:

The next step is to recursively build up the sequence. Define . Noting that the sequence starts with , we can define a glue string which gives:

We assigned to a particular sequence which gives the property that also occurs at the top of the sequence.

This process can be continued indefinitely with . It turns out that we can discover a glue string by noting that will never have a 1, and that it stops once it reaches the first 1 to follow . [4] It has also been proven that Gijswijt's sequence can be built up in this fashion indefinitely ‒ that is, and are always finite in length for any . [3]

Clever manipulation of the glue sequences in this recursive structure can be used to demonstrate that Gijswijt's sequence contains all the natural numbers, among other properties of the sequence.

See also

Related Research Articles

In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

<span class="mw-page-title-main">Law of large numbers</span> Averages of repeated trials converge to the expected value

In probability theory, the law of large numbers (LLN) is a mathematical law that states that the average of the results obtained from a large number of independent random samples converges to the true value, if it exists. More formally, the LLN states that given a sample of independent and identically distributed values, the sample mean converges to the true mean.

<span class="mw-page-title-main">Limit of a sequence</span> Value to which tends an infinite sequence

In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol. If such a limit exists and is finite, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.

<span class="mw-page-title-main">Abundant number</span> Number that is less than the sum of its proper divisors

In number theory, an abundant number or excessive number is a positive integer for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The amount by which the sum exceeds the number is the abundance. The number 12 has an abundance of 4, for example.

In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known.

In mathematics, the Lucas–Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Édouard Lucas in 1878 and subsequently proved by Derrick Henry Lehmer in 1930.

<span class="mw-page-title-main">Look-and-say sequence</span> Integer sequence

In mathematics, the look-and-say sequence is the sequence of integers beginning as follows:

In mathematics, the lexicographic or lexicographical order is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a totally ordered set.

In econometrics, the autoregressive conditional heteroskedasticity (ARCH) model is a statistical model for time series data that describes the variance of the current error term or innovation as a function of the actual sizes of the previous time periods' error terms; often the variance is related to the squares of the previous innovations. The ARCH model is appropriate when the error variance in a time series follows an autoregressive (AR) model; if an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.

In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.

Vector autoregression (VAR) is a statistical model used to capture the relationship between multiple quantities as they change over time. VAR is a type of stochastic process model. VAR models generalize the single-variable (univariate) autoregressive model by allowing for multivariate time series. VAR models are often used in economics and the natural sciences.

In number theory, the Dedekind psi function is the multiplicative function on the positive integers defined by

<span class="mw-page-title-main">Genus of a multiplicative sequence</span> A ring homomorphism from the cobordism ring of manifolds to another ring

In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.

In statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator.

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating.

In mathematics the Baum–Sweet sequence is an infinite automatic sequence of 0s and 1s defined by the rule:

In mathematics, the Rudin–Shapiro sequence, also known as the Golay–Rudin–Shapiro sequence, is an infinite 2-automatic sequence named after Marcel Golay, Harold S. Shapiro, and Walter Rudin who investigated its properties.

<span class="mw-page-title-main">Regular paperfolding sequence</span>

In mathematics the regular paperfolding sequence, also known as the dragon curve sequence, is an infinite sequence of 0s and 1s. It is obtained from the repeating partial sequence

Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's theorem is a special case of Szemerédi's theorem for the case .

References

  1. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA090822(Gijswijt's sequence: a(1) = 1; for n>1, a(n) = largest integer k such that the word a(1)a(2)...a(n-1) is of the form xy^k for words x and y (where y has positive length), i.e., the maximal number of repeating blocks at the end of the sequence so far)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. 1 2 van de Pol, Levi. "The first occurrence of a number in Gijswijt's sequence". arXiv: 2209.04657 .
  3. 1 2 Gijswijt, D.C. (2006). "A Slow-Growing Sequence Defined by an Unusual Recurrence". arXiv: math/0602498 .
  4. Sloane, Neil. "Seven Staggering Sequences" (PDF). AT&T Shannon Lab. p. 3.
OEIS sequenceA090822(Gijswijt's sequence)