Going up and going down

Last updated

In commutative algebra, a branch of mathematics, going up and going down are terms which refer to certain properties of chains of prime ideals in integral extensions.

Contents

The phrase going up refers to the case when a chain can be extended by "upward inclusion", while going down refers to the case when a chain can be extended by "downward inclusion".

The major results are the Cohen–Seidenberg theorems, which were proved by Irvin S. Cohen and Abraham Seidenberg. These are known as the going-up and going-down theorems.

Going up and going down

Let A  B be an extension of commutative rings.

The going-up and going-down theorems give sufficient conditions for a chain of prime ideals in B, each member of which lies over members of a longer chain of prime ideals in A, to be able to be extended to the length of the chain of prime ideals in A.

Lying over and incomparability

First, we fix some terminology. If and are prime ideals of A and B, respectively, such that

(note that is automatically a prime ideal of A) then we say that lies under and that lies over. In general, a ring extension A  B of commutative rings is said to satisfy the lying over property if every prime ideal of A lies under some prime ideal of B.

The extension A  B is said to satisfy the incomparability property if whenever and are distinct primes of B lying over a prime in A, then    and   .

Going-up

The ring extension A  B is said to satisfy the going-up property if whenever

is a chain of prime ideals of A and

is a chain of prime ideals of B with m < n and such that lies over for 1  i  m, then the latter chain can be extended to a chain

such that lies over for each 1  i  n.

In ( Kaplansky 1970 ) it is shown that if an extension A  B satisfies the going-up property, then it also satisfies the lying-over property.

Going-down

The ring extension A  B is said to satisfy the going-down property if whenever

is a chain of prime ideals of A and

is a chain of prime ideals of B with m < n and such that lies over for 1  i  m, then the latter chain can be extended to a chain

such that lies over for each 1  i  n.

There is a generalization of the ring extension case with ring morphisms. Let f : A  B be a (unital) ring homomorphism so that B is a ring extension of f(A). Then f is said to satisfy the going-up property if the going-up property holds for f(A) in B.

Similarly, if B is a ring extension of f(A), then f is said to satisfy the going-down property if the going-down property holds for f(A) in B.

In the case of ordinary ring extensions such as A  B, the inclusion map is the pertinent map.

Going-up and going-down theorems

The usual statements of going-up and going-down theorems refer to a ring extension A  B:

  1. (Going up) If B is an integral extension of A, then the extension satisfies the going-up property (and hence the lying over property), and the incomparability property.
  2. (Going down) If B is an integral extension of A, and B is a domain, and A is integrally closed in its field of fractions, then the extension (in addition to going-up, lying-over and incomparability) satisfies the going-down property.

There is another sufficient condition for the going-down property:

Proof: [2] Let p1  p2 be prime ideals of A and let q2 be a prime ideal of B such that q2  A = p2. We wish to prove that there is a prime ideal q1 of B contained in q2 such that q1  A = p1. Since A  B is a flat extension of rings, it follows that Ap2  Bq2 is a flat extension of rings. In fact, Ap2  Bq2 is a faithfully flat extension of rings since the inclusion map Ap2  Bq2 is a local homomorphism. Therefore, the induced map on spectra Spec(Bq2)  Spec(Ap2) is surjective and there exists a prime ideal of Bq2 that contracts to the prime ideal p1Ap2 of Ap2. The contraction of this prime ideal of Bq2 to B is a prime ideal q1 of B contained in q2 that contracts to p1. The proof is complete. Q.E.D.

Related Research Articles

<span class="mw-page-title-main">Ideal (ring theory)</span> Additive subgroup of a mathematical ring that absorbs multiplication

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

<span class="mw-page-title-main">Ring theory</span> Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

In mathematics, an element of a ring is called nilpotent if there exists some positive integer , called the index, such that .

In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements:

<span class="mw-page-title-main">Fractional ideal</span>

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that every subset is compact.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes.

In ring theory, a branch of mathematics, the conductor is a measurement of how far apart a commutative ring and an extension ring are. Most often, the larger ring is a domain integrally closed in its field of fractions, and then the conductor measures the failure of the smaller ring to be integrally closed.

In commutative algebra, a Krull ring, or Krull domain, is a commutative ring with a well behaved theory of prime factorization. They were introduced by Wolfgang Krull in 1931. They are a higher-dimensional generalization of Dedekind domains, which are exactly the Krull domains of dimension at most 1.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A which is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed: fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

References

  1. This follows from a much more general lemma in Bruns-Herzog, Lemma A.9 on page 415.
  2. Matsumura, page 33, (5.D), Theorem 4