Grain boundary diffusion coefficient

Last updated

The grain boundary diffusion coefficient is the diffusion coefficient of a diffusant along a grain boundary in a polycrystalline solid. [1] It is a physical constant denoted , and it is important in understanding how grain boundaries affect atomic diffusivity. Grain boundary diffusion is a commonly observed route for solute migration in polycrystalline materials. It dominates the effective diffusion rate at lower temperatures in metals and metal alloys. Take the apparent self-diffusion coefficient for single-crystal and polycrystal silver, for example. At high temperatures, the coefficient is the same in both types of samples. However, at temperatures below 700 °C, the values of with polycrystal silver consistently lie above the values of with a single crystal. [2]

Contents

Measurement

A model of grain boundary diffusion developed by JC Fisher in 1953. This solution can then be modeled via a modified differential solution to Fick's Second Law that adds a term for sideflow out of the boundary, given by the equation
a
[?]
ph
[?]
t
+
f
(
y
,
t
)
=
a
D
'
[?]
2
ph
[?]
x
2
{\displaystyle a{\frac {\partial \varphi }{\partial t}}+f(y,t)=aD'{\partial ^{2}\varphi \over \partial x^{2}}}
, where
D
'
{\displaystyle D'}
is the diffusion coefficient,
2
a
{\displaystyle 2a}
is the boundary width, and
f
(
y
,
t
)
{\displaystyle f(y,t)}
is the rate of sideflow. GrainBoundaryDiffusion.png
A model of grain boundary diffusion developed by JC Fisher in 1953. This solution can then be modeled via a modified differential solution to Fick's Second Law that adds a term for sideflow out of the boundary, given by the equation, where is the diffusion coefficient, is the boundary width, and is the rate of sideflow.

The general way to measure grain boundary diffusion coefficients was suggested by Fisher. [3] In the Fisher model, a grain boundary is represented as a thin layer of high-diffusivity uniform and isotropic slab embedded in a low-diffusivity isotropic crystal. Suppose that the thickness of the slab is , the length is , and the depth is a unit length, the diffusion process can be described as the following formula. The first equation represents diffusion in the volume, while the second shows diffusion along the grain boundary, respectively.

where

where is the volume concentration of the diffusing atoms and is their concentration in the grain boundary.

To solve the equation, Whipple introduced an exact analytical solution. He assumed a constant surface composition, and used a Fourier–Laplace transform to obtain a solution in integral form. [4] The diffusion profile therefore can be depicted by the following equation.

To further determine , two common methods were used. The first is used for accurate determination of . The second technique is useful for comparing the relative of different boundaries.

Related Research Articles

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

<span class="mw-page-title-main">Laplace operator</span> Differential operator

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena, including heat conduction, particle diffusion, and pricing of derivative investment instruments.

<span class="mw-page-title-main">Eddy diffusion</span> Mixing of fluids due to eddy currents

In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

<span class="mw-page-title-main">Coble creep</span>

Coble creep, a form of diffusion creep, is a mechanism for deformation of crystalline solids. Contrasted with other diffusional creep mechanisms, Coble creep is similar to Nabarro–Herring creep in that it is dominant at lower stress levels and higher temperatures than creep mechanisms utilizing dislocation glide. Coble creep occurs through the diffusion of atoms in a material along grain boundaries. This mechanism is observed in polycrystals or along the surface in a single crystal, which produces a net flow of material and a sliding of the grain boundaries.

Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between the negative value of the mole fraction gradient and the molar flux. This distinction is especially significant in gaseous systems with strong temperature gradients. Diffusivity derives its definition from Fick's law and plays a role in numerous other equations of physical chemistry.

Taylor dispersion or Taylor diffusion is an effect in fluid mechanics in which a shear flow can increase the effective diffusivity of a species. Essentially, the shear acts to smear out the concentration distribution in the direction of the flow, enhancing the rate at which it spreads in that direction. The effect is named after the British fluid dynamicist G. I. Taylor, who described the shear-induced dispersion for large Peclet numbers. The analysis was later generalized by Rutherford Aris for arbitrary values of the Peclet number. The dispersion process is sometimes also referred to as the Taylor-Aris dispersion.

<span class="mw-page-title-main">Spinodal decomposition</span> Mechanism of spontaneous phase separation

Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases. Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separation via decomposition does not require the nucleation events resulting from thermodynamic fluctuations, which normally trigger phase separation.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

<span class="mw-page-title-main">Diffusion</span> Transport of dissolved species from the highest to the lowest concentration region

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields, beyond physics, such as statistics, probability theory, information theory, neural networks, finance and marketing etc.

In numerical analysis, the FTCS method is a finite difference method used for numerically solving the heat equation and similar parabolic partial differential equations. It is a first-order method in time, explicit in time, and is conditionally stable when applied to the heat equation. When used as a method for advection equations, or more generally hyperbolic partial differential equations, it is unstable unless artificial viscosity is included. The abbreviation FTCS was first used by Patrick Roache.

The effective diffusion coefficient of a diffusant in atomic diffusion of solid polycrystalline materials like metal alloys is often represented as a weighted average of the grain boundary diffusion coefficient and the lattice diffusion coefficient. Diffusion along both the grain boundary and in the lattice may be modeled with an Arrhenius equation. The ratio of the grain boundary diffusion activation energy over the lattice diffusion activation energy is usually 0.4–0.6, so as temperature is lowered, the grain boundary diffusion component increases. Increasing temperature often allows for increased grain size, and the lattice diffusion component increases with increasing temperature, so often at 0.8 Tmelt, the grain boundary component can be neglected.

<span class="mw-page-title-main">Lattice diffusion coefficient</span> Atomic diffusion within a crystalline lattice

In condensed matter physics, lattice diffusion refers to atomic diffusion within a crystalline lattice, which occurs by either interstitial or substitutional mechanisms. In interstitial lattice diffusion, a diffusant, will diffuse in between the lattice structure of another crystalline element. In substitutional lattice diffusion, the atom can only move by switching places with another atom. Substitutional lattice diffusion is often contingent upon the availability of point vacancies throughout the crystal lattice. Diffusing particles migrate from point vacancy to point vacancy by the rapid, essentially random jumping about. Since the prevalence of point vacancies increases in accordance with the Arrhenius equation, the rate of crystal solid state diffusion increases with temperature. For a single atom in a defect-free crystal, the movement can be described by the "random walk" model.

In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.

In metallurgy, the Darken equations are used to describe the solid-state diffusion of materials in binary solutions. They were first described by Lawrence Stamper Darken in 1948. The equations apply to cases where a solid solution's two components do not have the same coefficient of diffusion.

Nabarro–Herring creep is a mode of deformation of crystalline materials that occurs at low stresses and held at elevated temperatures in fine-grained materials. In Nabarro–Herring creep, atoms diffuse through the crystals, and the creep rate varies inversely with the square of the grain size so fine-grained materials creep faster than coarser-grained ones. NH creep is solely controlled by diffusional mass transport. This type of creep results from the diffusion of vacancies from regions of high chemical potential at grain boundaries subjected to normal tensile stresses to regions of lower chemical potential where the average tensile stresses across the grain boundaries are zero. Self-diffusion within the grains of a polycrystalline solid can cause the solid to yield to an applied shearing stress, the yielding being caused by a diffusional flow of matter within each crystal grain away from boundaries where there is a normal pressure and toward those where there is a normal tension. Atoms migrating in the opposite direction account for the creep strain. The creep strain rate is derived in the next section. NH creep is more important in ceramics than metals as dislocation motion is more difficult to effect in ceramics.

Magnetic diffusion refers to the motion of magnetic fields, typically in the presence of a conducting solid or fluid such as a plasma. The motion of magnetic fields is described by the magnetic diffusion equation and is due primarily to induction and diffusion of magnetic fields through the material. The magnetic diffusion equation is a partial differential equation commonly used in physics. Understanding the phenomenon is essential to magnetohydrodynamics and has important consequences in astrophysics, geophysics, and electrical engineering.

References

  1. P. Heitjans, J. Karger, Ed, “Diffusion in condensed matter: Methods, Materials, Models,” 2nd edition, Birkhauser, 2005, pp. 1-965.
  2. Shewmon, Paul (2016). Diffusion in Solids. Bibcode:2016diso.book.....S. doi:10.1007/978-3-319-48206-4. ISBN   978-3-319-48564-5. S2CID   137442988.
  3. Fisher, J. C. (January 1951). "Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion". Journal of Applied Physics. 22 (1): 74–77. Bibcode:1951JAP....22...74F. doi:10.1063/1.1699825. ISSN   0021-8979.
  4. Whipple, R.T.P. (1954-12-01). "CXXXVIII. Concentration contours in grain boundary diffusion". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45 (371): 1225–1236. doi:10.1080/14786441208561131. ISSN   1941-5982.

See also