Graphene antenna

Last updated

A graphene antenna is a high-frequency antenna based on graphene, a one atom thick two dimensional carbon crystal, designed to enhance radio communications. [1] [2] [3] [4] The unique structure of graphene would enable these enhancements. Ultimately, the choice of graphene for the basis of this nano antenna was due to the behavior of electrons.

Contents

Antenna

It would be unfeasible to simply reduce traditional metallic antennas to nano sizes, because they would require tremendously high frequencies to operate. [5] [6] [7] Consequently, it would require a lot of power to operate them. Furthermore, electrons in these traditional metals are not very mobile at nano sizes and the necessary electromagnetic waves would not form. However, these limitations would not be an issue with graphene's unique capabilities. A flake of graphene has the potential to hold a series of metal electrodes. Consequently, it would be possible to develop an antenna from this material. [8] [9]

Electron behavior

Graphene has a unique structure, wherein, electrons are able to move with minimal resistance. This enables electricity to move at a much faster speed than in metal, which is used for current antennas. Furthermore, as the electrons oscillate, they create an electromagnetic wave atop the graphene layer, referred to as the surface plasmon polariton wave. This would enable the antenna to operate at the lower end of the terahertz frequency, which would be more efficient than the current copper based antennas. Ultimately, researchers envision that graphene will be able to break through the limitations of current antennas. [8] [9]

Properties

It has been estimated that speeds of up to terabits per second can be achieved using such a device. [10] Traditional antennas would require very high frequencies to operate at nano scales, making it an unfeasible option. However, the unique slower movement of electrons in graphene would enable it to operate at lower frequencies making it a feasible option for a nano sized antenna. [9] [11] [12]

Projects

Oak Ridge National Laboratory

Researchers from the Department of Energy’s Oak Ridge National Laboratory (ORNL) have discovered a unique way to create an atomic antenna. Two sheets of graphene can be connected by a silicon wire that is approximately 0.1 nanometer in diameter. This is approximately 100 times smaller than current metal based wires, which can only be reduced to 50 nanometers. This silicon wire however, is a plasmotic device, which would enable the formation of surface plasmon polariton waves required to operate this nano antenna. [12]

Samsung

Samsung has funded $120,000 for research into the graphene antenna to a team of researchers from the Georgia Institute of Technology and the Polytechnic University of Catalonia. Their research has shown that graphene is a feasible material to make nano antennas with. They have simulated how the electrons would behave, and have confirmed that surface plasmon polariton waves should form. This wave is essential for the graphene antenna to operate at the low end of the terahertz range, making it more efficient than traditional antenna designs. Researchers are currently working on implementing their research, and finding a way to propagate the electromagnetic waves necessary to operate the antenna. Their findings were published in the IEEE Journal on Selected Areas in Communications. [11] [13]

University of Manchester

A collaboration between the University of Manchester and an industrial partner developed a new way to manufacture graphene antennas for radio-frequency identification. [14] The antennas are paper-based, flexible and environmentally friendly. Their findings were published in Applied Physics Letters [15] and are being commercialised by Graphene Security. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Plasmon</span> Quasiparticle of charge oscillations in condensed matter

In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

<span class="mw-page-title-main">Terahertz radiation</span> Range 300-3000 GHz of the electromagnetic spectrum

Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3 terahertz (THz), although the upper boundary is somewhat arbitrary and is considered by some sources as 30 THz. One terahertz is 1012 Hz or 1000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm = 100 µm. Because terahertz radiation begins at a wavelength of around 1 millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. This band of electromagnetic radiation lies within the transition region between microwave and far infrared, and can be regarded as either.

<span class="mw-page-title-main">Surface plasmon resonance</span> Physical phenomenon of electron resonance

Surface plasmon resonance (SPR) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed. This makes SPR a possible technique for detecting particular substances (analytes) and SPR biosensors have been developed to detect various important biomarkers.

Phaedon Avouris is a Greek chemical physicist and materials scientist. He is an IBM Fellow and was formerly the group leader for Nanometer Scale Science and Technology at the Thomas J. Watson Research Center in Yorktown Heights, New York.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

<span class="mw-page-title-main">Ian F. Akyildiz</span> President and CTO of the Truva Inc

Ian F. Akyildiz received his BS, MS, and PhD degrees in Electrical and Computer Engineering from the University of Erlangen-Nürnberg, Germany, in 1978, 1981 and 1984, respectively. Currently, he is the President and CTO of the Truva Inc. since March 1989. He retired from the School of Electrical and Computer Engineering (ECE) at Georgia Tech in 2021 after almost 35 years service as Ken Byers Chair Professor in Telecommunications and Chair of the Telecom group.

<span class="mw-page-title-main">Surface plasmon</span>

Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface. SPs have lower energy than bulk plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas.

Plasmonic nanolithography is a nanolithographic process that utilizes surface plasmon excitations such as surface plasmon polaritons (SPPs) to fabricate nanoscale structures. SPPs, which are surface waves that propagate in between planar dielectric-metal layers in the optical regime, can bypass the diffraction limit on the optical resolution that acts as a bottleneck for conventional photolithography.

<span class="mw-page-title-main">Optical rectenna</span>

An optical rectenna is a rectenna that works with visible or infrared light. A rectenna is a circuit containing an antenna and a diode, which turns electromagnetic waves into direct current electricity. While rectennas have long been used for radio waves or microwaves, an optical rectenna would operate the same way but with infrared or visible light, turning it into electricity.

<span class="mw-page-title-main">Tunable metamaterial</span>

A tunable metamaterial is a metamaterial with a variable response to an incident electromagnetic wave. This includes remotely controlling how an incident electromagnetic wave interacts with a metamaterial. This translates into the capability to determine whether the EM wave is transmitted, reflected, or absorbed. In general, the lattice structure of the tunable metamaterial is adjustable in real time, making it possible to reconfigure a metamaterial device during operation. It encompasses developments beyond the bandwidth limitations in left-handed materials by constructing various types of metamaterials. The ongoing research in this domain includes electromagnetic materials that are very meta which mean good and has a band gap metamaterials (EBG), also known as photonic band gap (PBG), and negative refractive index material (NIM).

A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.

A metamaterial absorber is a type of metamaterial intended to efficiently absorb electromagnetic radiation such as light. Furthermore, metamaterials are an advance in materials science. Hence, those metamaterials that are designed to be absorbers offer benefits over conventional absorbers such as further miniaturization, wider adaptability, and increased effectiveness. Intended applications for the metamaterial absorber include emitters, photodetectors, sensors, spatial light modulators, infrared camouflage, wireless communication, and use in solar photovoltaics and thermophotovoltaics.

<span class="mw-page-title-main">Surface plasmon polariton</span> Electromagnetic waves that travel along an interface

Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

<span class="mw-page-title-main">Plasmonic nanoparticles</span>

Plasmonic nanoparticles are particles whose electron density can couple with electromagnetic radiation of wavelengths that are far larger than the particle due to the nature of the dielectric-metal interface between the medium and the particles: unlike in a pure metal where there is a maximum limit on what size wavelength can be effectively coupled based on the material size.

Potential graphene applications include lightweight, thin, and flexible electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials.

<span class="mw-page-title-main">Plasmonics</span>

Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.

<span class="mw-page-title-main">Electromagnetic metasurface</span>

An electromagnetic metasurface refers to a kind of artificial sheet material with sub-wavelength thickness. Metasurfaces can be either structured or unstructured with subwavelength-scaled patterns in the horizontal dimensions.

Graphene is a 2D nanosheet with atomic thin thickness in terms of 0.34 nm. Due to the ultrathin thickness, graphene showed many properties that are quite different from their bulk graphite counterparts. The most prominent advantages are known to be their high electron mobility and high mechanical strengths. Thus, it exhibits potential for applications in optics and electronics especially for the development of wearable devices as flexible substrates. More importantly, the optical absorption rate of graphene is 2.3% in the visible and near-infrared region. This broadband absorption characteristic also attracted great attention of the research community to exploit the graphene-based photodetectors/modulators.

Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.

References

  1. Perruisseau-Carrier, Julien (2012). "Graphene for antenna applications: Opportunities and challenges from microwaves to THZ". 2012 Loughborough Antennas & Propagation Conference (LAPC). pp. 1–4. arXiv: 1210.3444 . doi:10.1109/lapc.2012.6402934. ISBN   978-1-4673-2220-1. S2CID   36205070.
  2. Wang, W.; Ma, C.; Zhang, X.; Shen, J.; Hanagata, N.; Huangfu, J.; Xu, M. (2019). "High-performance printable 2.4 GHZ graphene-based antenna using water-transferring technology". Science and Technology of Advanced Materials. 20 (1): 870–875. Bibcode:2019STAdM..20..870W. doi:10.1080/14686996.2019.1653741. PMC   6713133 . PMID   31489056.
  3. Correas-Serrano, D.; Gomez-Diaz, J. S. (2017). "Graphene-based Antennas for Terahertz Systems: A Review". arXiv: 1704.00371 [cond-mat.mes-hall].
  4. Blackledge, J. M.; Boretti, A.; Rosa, L.; Castelletto, S. (2021). "Fractal Graphene Patch Antennas and the THZ Communications Revolution". IOP Conference Series: Materials Science and Engineering. 1060 (1): 012001. Bibcode:2021MS&E.1060a2001B. doi: 10.1088/1757-899X/1060/1/012001 . hdl: 11380/1236839 . S2CID   234080752.
  5. Giannini, Vincenzo; Fernández-Domínguez, Antonio I.; Heck, Susannah C.; Maier, Stefan A. (2011). "Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters". Chemical Reviews. 111 (6): 3888–3912. doi:10.1021/cr1002672. PMID   21434605.
  6. Shah, Syed Imran Hussain; Lim, Sungjoon (2021). "Review on recent origami inspired antennas from microwave to terahertz regime". Materials & Design. 198: 109345. doi: 10.1016/j.matdes.2020.109345 . S2CID   229437610.
  7. Hao, Huali; Hui, David; Lau, Denvid (2020). "Material advancement in technological development for the 5G wireless communications". Nanotechnology Reviews. 9: 683–699. doi: 10.1515/ntrev-2020-0054 . S2CID   221371916.
  8. 1 2 Llatser, Ignacio (2012). Characterization of graphene-based nano-antennas in the terahertz band. IEEE European Conference on Antennas and Propagation. pp. 194–198. doi:10.1109/EuCAP.2012.6206598.
  9. 1 2 3 Dragoman, Mircea (2010). "Terahertz Radio based on Graphene". Journal of Applied Physics. 107 (10): 104313–104313–3. Bibcode:2010JAP...107j4313D. doi:10.1063/1.3427536.
  10. Trevino, J.; Walsh, G. F.; Pecora, E. F.; Boriskina, S. V.; Dal Negro, L. (2013). "Photonic–plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing". Optics Letters. 38 (22): 4861. Bibcode:2013OptL...38.4861T. doi:10.1364/OL.38.004861. PMID   24322151.
  11. 1 2 Toon, John (2013-12-11). "Graphene-Based Nano-Antennas May Enable Networks of Tiny Machines". Georgia Tech. Retrieved October 28, 2014.
  12. 1 2 Anthony, Sebastian (February 2, 2012). "Graphene acts as a plasmonic antenna, leads towards 0.1nm wires in chips". ExtremeTech. Retrieved 12 November 2014.
  13. Hewitt, John (February 25, 2013). "Samsung funds graphene antenna project for wireless, ultra-fast intra-chip links". ExtremeTech. Retrieved October 29, 2014.
  14. "Graphene antenna 'could deliver cheap, flexible sensors'". The University of Manchester. 20 May 2015. Retrieved 2017-07-17.
  15. Huang, Xianjun; Leng, Ting; Zhang, Xiao; Chen, Jia Cing; Chang, Kuo Hsin; Geim, Andre K.; Novoselov, Kostya S.; Hu, Zhirun (2015). "Binder-free highly conductive graphene laminate for low cost printed radio frequency applications". Applied Physics Letters. 106 (20): 203105. Bibcode:2015ApPhL.106t3105H. doi:10.1063/1.4919935.
  16. "Graphene Antennas – Graphene Security". graphenesecurity.co. Retrieved 2017-07-17.