Green's function for the three-variable Laplace equation

Last updated

In physics, the Green's function (or fundamental solution) for the Laplacian (or Laplace operator) in three variables is used to describe the response of a particular type of physical system to a point source. In particular, this Green's function arises in systems that can be described by Poisson's equation, a partial differential equation (PDE) of the form

Contents

where is the Laplace operator in , is the source term of the system, and is the solution to the equation. Because is a linear differential operator, the solution to a general system of this type can be written as an integral over a distribution of source given by :

where the Green's function for Laplacian in three variables describes the response of the system at the point to a point source located at :

and the point source is given by , the Dirac delta function.

Motivation

One physical system of this type is a charge distribution in electrostatics. In such a system, the electric field is expressed as the negative gradient of the electric potential, and Gauss's law in differential form applies:

Combining these expressions gives us Poisson's equation:

We can find the solution to this equation for an arbitrary charge distribution by temporarily considering the distribution created by a point charge located at :

In this case,

which shows that for will give the response of the system to the point charge . Therefore, from the discussion above, if we can find the Green's function of this operator, we can find to be

for a general charge distribution.

Mathematical exposition

The free-space Green's function for the Laplace operator in three variables is given in terms of the reciprocal distance between two points and is known as the "Newton kernel" or "Newtonian potential". That is to say, the solution of the equation

is

where are the standard Cartesian coordinates in a three-dimensional space, and is the Dirac delta function.

The algebraic expression of the Green's function for the three-variable Laplace operator, apart from the constant term expressed in Cartesian coordinates shall be referred to as

Many expansion formulas are possible, given the algebraic expression for the Green's function. One of the most well-known of these, the Laplace expansion for the three-variable Laplace equation, is given in terms of the generating function for Legendre polynomials,

which has been written in terms of spherical coordinates . The less than (greater than) notation means, take the primed or unprimed spherical radius depending on which is less than (greater than) the other. The represents the angle between the two arbitrary vectors given by

The free-space circular cylindrical Green's function (see below) is given in terms of the reciprocal distance between two points. The expression is derived in Jackson's Classical Electrodynamics. [1] Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation. There are many expansions in terms of special functions for the Green's function. In the case of a boundary put at infinity with the boundary condition setting the solution to zero at infinity, then one has an infinite-extent Green's function. For the three-variable Laplace operator, one can for instance expand it in the rotationally invariant coordinate systems which allow separation of variables. For instance:

where

and is the odd-half-integer degree Legendre function of the second kind, which is a toroidal harmonic. Here the expansion has been written in terms of cylindrical coordinates . See for instance Toroidal coordinates.

Using one of the Whipple formulae for toroidal harmonics we can obtain an alternative form of the Green's function

in terms for a toroidal harmonic of the first kind.

This formula was used in 1999 for astrophysical applications in a paper published in The Astrophysical Journal, published by Howard Cohl and Joel Tohline. [2] The above-mentioned formula is also known in the engineering community. For instance, a paper written in the Journal of Applied Physics in volume 18, 1947 pages 562-577 shows N.G. De Bruijn and C.J. Boukamp knew of the above relationship. In fact, virtually all the mathematics found in recent papers was already done by Chester Snow. This is found in his book titled Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory, National Bureau of Standards Applied Mathematics Series 19, 1952. Look specifically on pages 228-263. The article by Chester Snow, "Magnetic Fields of Cylindrical Coils and Annular Coils" (National Bureau of Standards, Applied Mathematical Series 38, December 30, 1953), clearly shows the relationship between the free-space Green's function in cylindrical coordinates and the Q-function expression. Likewise, see another one of Snow's pieces of work, titled "Formulas for Computing Capacitance and Inductance", National Bureau of Standards Circular 544, September 10, 1954, pp 13–41. Indeed, not much has been published recently on the subject of toroidal functions and their applications in engineering or physics. However, a number of engineering applications do exist. One application was published; the article was written by J.P. Selvaggi, S. Salon, O. Kwon, and M.V.K. Chari, "Calculating the External Magnetic Field From Permanent Magnets in Permanent-Magnet Motors-An Alternative Method," IEEE Transactions on Magnetics, Vol. 40, No. 5, September 2004. These authors have done extensive work with Legendre functions of the second kind and half-integral degree or toroidal functions of zeroth order. They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions.

The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function. Examples of these can be seen to exist in rotational cylindrical coordinates as an integral Laplace transform in the difference of vertical heights whose kernel is given in terms of the order-zero Bessel function of the first kind as

where are the greater (lesser) variables and . Similarly, the Green's function for the three-variable Laplace equation can be given as a Fourier integral cosine transform of the difference of vertical heights whose kernel is given in terms of the order-zero modified Bessel function of the second kind as

Rotationally invariant Green's functions for the three-variable Laplace operator

Green's function expansions exist in all of the rotationally invariant coordinate systems which are known to yield solutions to the three-variable Laplace equation through the separation of variables technique.

See also

Related Research Articles

In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .

<span class="mw-page-title-main">Spherical coordinate system</span> 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three numbers, : the radial distance of the radial liner connecting the point to the fixed point of origin ; the polar angle θ of the radial line r; and the azimuthal angle φ of the radial line r.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity present in the flow.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation:

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. Specifically, it is used in the modeling of thin structures that react elastically to external forces.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Oblate spheroidal coordinates</span> Three-dimensional orthogonal coordinate system

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

In physics, the Laplace expansion of potentials that are directly proportional to the inverse of the distance, such as Newton's gravitational potential or Coulomb's electrostatic potential, expresses them in terms of the spherical Legendre polynomials. In quantum mechanical calculations on atoms the expansion is used in the evaluation of integrals of the inter-electronic repulsion.

In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ (radial coordinate), φ (polar angle), and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions (which occasionally are also called cylindrical harmonics).

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References

  1. Jackson's Classical Electrodynamics text 3rd ed. pages 125–127
  2. The Astrophysical Journal, 527, 86–101, published by Howard Cohl and Joel Tohline