Green's function number

Last updated

In mathematical heat conduction, the Green's function number is used to uniquely categorize certain fundamental solutions of the heat equation to make existing solutions easier to identify, store, and retrieve.

Contents

Background

Numbers have long been used to identify types of boundary conditions. [1] [2] [3] The Green's function number system was proposed by Beck and Litkouhi in 1988 [4] and has seen increasing use since then. [5] [6] [7] [8] The number system has been used to catalog a large collection of Green's functions and related solutions. [9] [10] [11] [12]

Although the examples given below are for the heat equation, this number system applies to any phenomena described by differential equations such as diffusion, acoustics, electromagnetics, fluid dynamics, etc.

Notation

The Green's function number specifies the coordinate system and the type of boundary conditions that a Green's function satisfies. The Green's function number has two parts, a letter designation followed by a number designation. The letter(s) designate the coordinate system, while the numbers designate the type of boundary conditions that are satisfied.

Table 1. Boundary conditions designations for Green's function number system.
NameBoundary conditionNumber
No physical boundaryG is bounded0
Dirichlet1
Neumann2
Robin3

Some of the designations for the Greens function number system are given next. Coordinate system designations include: X, Y, and Z for Cartesian coordinates; R, Z, for cylindrical coordinates; and, RS, , for spherical coordinates. Designations for several boundary conditions are given in Table 1. The zeroth boundary condition is important for identifying the presence of a coordinate boundary where no physical boundary exists, for example, far away in a semi-infinite body or at the center of a cylindrical or spherical body.

Examples in Cartesian coordinates

X11

As an example, number X11 denotes the Green's function that satisfies the heat equation in the domain (0 < x < L) for boundary conditions of type 1 (Dirichlet) at both boundaries x = 0 and x = L. Here X denotes the Cartesian coordinate and 11 denotes the type 1 boundary condition at both sides of the body. The boundary value problem for the X11 Green's function is given by

Here is the thermal diffusivity (m2/s) and is the Dirac delta function. This GF is developed elsewhere. [13] [14]

X20

As another Cartesian example, number X20 denotes the Green's function in the semi-infinite body () with a Neumann (type 2) boundary at x = 0. Here X denotes the Cartesian coordinate, 2 denotes the type 2 boundary condition at x = 0 and 0 denotes the zeroth type boundary condition (boundedness) at . The boundary value problem for the X20 Green's function is given by

This GF is published elsewhere. [15] [16]

X10Y20

As a two-dimensional example, number X10Y20 denotes the Green's function in the quarter-infinite body (, ) with a Dirichlet (type 1) boundary at x = 0 and a Neumann (type 2) boundary at y = 0. The boundary value problem for the X10Y20 Green's function is given by

Applications of related half-space and quarter-space GF are available. [17]

Examples in cylindrical coordinates

R03

As an example in the cylindrical coordinate system, number R03 denotes the Green's function that satisfies the heat equation in the solid cylinder (0 < r < a) with a boundary condition of type 3 (Robin) at r = a. Here letter R denotes the cylindrical coordinate system, number 0 denotes the zeroth boundary condition (boundedness) at the center of the cylinder (r = 0), and number 3 denotes the type 3 (Robin) boundary condition at r = a. The boundary value problem for R03 Green's function is given by

Here is thermal conductivity (W/(m K)) and is the heat transfer coefficient (W/(m2 K)). See [18] [19] for this GF.

R10

As another example, number R10 denotes the Green's function in a large body containing a cylindrical void (a < r < ) with a type 1 (Dirichlet) boundary condition at r = a. Again letter R denotes the cylindrical coordinate system, number 1 denotes the type 1 boundary at r = a, and number 0 denotes the type zero boundary (boundedness) at large values of r. The boundary value problem for the R10 Green's function is given by

This GF is available elsewhere. [20] [21]

R01𝜙00

As a two dimensional example, number R0100 denotes the Green's function in a solid cylinder with angular dependence, with a type 1 (Dirichlet) boundary condition at r = a. Here letter denotes the angular coordinate, and numbers 00 denote the type zero boundaries for angle; here no physical boundary takes the form of the periodic boundary condition. The boundary value problem for the R0100 Green's function is given by

Both a transient [22] and steady form [23] of this GF are available.

Example in spherical coordinates

RS02

As an example in the spherical coordinate system, number RS02 denotes the Green's function for a solid sphere (0 < r < b ) with a type 2 (Neumann) boundary condition at r = b. Here letters RS denote the radial-spherical coordinate system, number 0 denotes the zeroth boundary condition (boundedness) at r=0, and number 2 denotes the type 2 boundary at r = b. The boundary value problem for the RS02 Green's function is given by

This GF is available elsewhere. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

<span class="mw-page-title-main">Heat equation</span> Partial differential equation describing the evolution of temperature in a region

In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Step response</span> Time behavior of a system controlled by Heaviside step functions

The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, the Melnikov method is a tool to identify the existence of chaos in a class of dynamical systems under periodic perturbation.

Filtering in the context of large eddy simulation (LES) is a mathematical operation intended to remove a range of small scales from the solution to the Navier-Stokes equations. Because the principal difficulty in simulating turbulent flows comes from the wide range of length and time scales, this operation makes turbulent flow simulation cheaper by reducing the range of scales that must be resolved. The LES filter operation is low-pass, meaning it filters out the scales associated with high frequencies.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

CFD stands for computational fluid dynamics. As per this technique, the governing differential equations of a flow system or thermal system are known in the form of Navier–Stokes equations, thermal energy equation and species equation with an appropriate equation of state. In the past few years, CFD has been playing an increasingly important role in building design, following its continuing development for over a quarter of a century. The information provided by CFD can be used to analyse the impact of building exhausts to the environment, to predict smoke and fire risks in buildings, to quantify indoor environment quality, and to design natural ventilation systems.

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells. It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

References

  1. Luikov, A. V. (1968). Analytical Heat Diffusion Theory. doi:10.1016/B978-0-12-459756-3.X5001-9. ISBN   0124597564.
  2. Özışık, M. Necati (1980). Heat conduction (1st ed.). New York: Wiley. ISBN   047105481X.
  3. Nowak, A.; Białecki, R.; Kurpisz, K. (February 1987). "Evaluating eigenvalues for boundary value problems of heat conduction in rectangular and cylindrical co-ordinate systems". International Journal for Numerical Methods in Engineering. 24 (2): 419–445. doi:10.1002/nme.1620240210.
  4. Beck, James V.; Litkouhi, Bahman (March 1988). "Heat conduction numbering system for basic geometries". International Journal of Heat and Mass Transfer. 31 (3): 505–515. doi:10.1016/0017-9310(88)90032-4.
  5. Al-Nimr, M. A.; Alkam, M. K. (19 September 1997). "A generalized thermal boundary condition". Heat and Mass Transfer. 33 (1–2): 157–161. doi:10.1007/s002310050173. S2CID   119549322.
  6. de Monte, Filippo (September 2006). "Multi-layer transient heat conduction using transition time scales". International Journal of Thermal Sciences. 45 (9): 882–892. doi:10.1016/j.ijthermalsci.2005.11.006.
  7. Lefebvre, G. (December 2010). "A general modal-based numerical simulation of transient heat conduction in a one-dimensional homogeneous slab". Energy and Buildings. 42 (12): 2309–2322. doi:10.1016/j.enbuild.2010.07.024.
  8. Toptan, A.; Porter, N. W.; Hales, J. D. (2020). "Construction of a code verification matrix for heat conduction with finite element code applications". Journal of Verification, Validation and Uncertainty Quantification. 5 (4): 041002. doi:10.1115/1.4049037.
  9. Cole, Kevin; Beck, James; Haji-Sheikh, A.; Litkouhi, Bahman (16 July 2010). Heat Conduction Using Greens Functions. doi:10.1201/9781439895214. ISBN   9781439813546.
  10. Green's Function Library, https://www.engr.unl.edu/~glibrary/home/index.html
  11. "Green's Function Library" . Retrieved November 19, 2020.
  12. "Exact Analytical Conduction Toolbox" . Retrieved March 4, 2021.
  13. Luikov, A. V. (1968). Analytical Heat Diffusion Theory. Academic Press. p. 388. ISBN   0124597564.
  14. Cole, K. D.; Beck, J. V.; Haji-Sheikh, A.; Litkouhi, B. (2011). Heat Conduction using Green's Functions (2nd ed.). Boca Rotan, FL: Taylor and Francis. p. 119. doi:10.1201/9781439895214. ISBN   9780429109188.
  15. Luikov, A. V. (1968). Analytical Heat Diffusion Theory. Academic Press. p. 387. ISBN   0124597564.
  16. Carslaw, H. S.; Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford University Press. p. 276. ISBN   9780198533689.
  17. Beck, J. V.; Wright, N..; Haji-Sheikh, A.; Cole, K. D; Amos. D. (2008). "Conduction in rectangular plates with boundary temperatures specified". International Journal of Heat and Mass Transfer. 52 (19–20): 4676–4690. doi:10.1016/j.ijheatmasstransfer.2008.02.020. S2CID   12677235.
  18. Carslaw, H. S.; Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford University Press. p. 369. ISBN   9780198533689.
  19. Cole, K. D.; Beck, J. V.; Haji_Sheikh, A.; Litkouhi, B. (2011). Heat Conduction Using Green's Functions (2nd ed.). Boca Rotan, FL: Taylor and Francis. p. 543. doi:10.1201/9781439895214. ISBN   9780429109188.
  20. Carslaw, H. S.; Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford University Press. p. 378. ISBN   9780198533689.
  21. Thambynayagam, R. K. M. (2011). The Diffusion Handbook. McGraw Hill. p. 432. ISBN   9780071751841.
  22. Cole, K. D.; Beck, J. V.; Haji_Sheikh, A.; Litkouhi, B. (2011). Heat Conduction Using Green's Functions (2nd ed.). Boca Rotan, FL: Taylor and Francis. p. 554. doi:10.1201/9781439895214. ISBN   9780429109188.
  23. Melnikov, Y. A. (1999). Influence Functions and Matrices. New York: Marcel Dekker. p. 223. ISBN   9780824719418.
  24. Cole, K. D.; Beck, J. V.; Haji_Sheikh, A.; Litkouhi, B. (2011). Heat Conduction Using Green's Functions (2nd ed.). Boca Rotan, FL: Taylor and Francis. p. 309. doi:10.1201/9781439895214. ISBN   9780429109188.