Growing teeth

Last updated

Growing teeth is a bioengineering technology with the ultimate goal to create new full molars in a person or an animal.

Contents

Chronology

Methods

Regenerative Research

Related Research Articles

<span class="mw-page-title-main">Human tooth</span> Calcified whitish structure in humans mouths used to break down food

Human teeth function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting. As such, they are considered part of the human digestive system. Humans have four types of teeth: incisors, canines, premolars, and molars, which each have a specific function. The incisors cut the food, the canines tear the food and the molars and premolars crush the food. The roots of teeth are embedded in the maxilla or the mandible and are covered by gums. Teeth are made of multiple tissues of varying density and hardness.

<span class="mw-page-title-main">Tooth enamel</span> Major tissue that makes up part of the tooth in humans and many animals

Tooth enamel is one of the four major tissues that make up the tooth in humans and many animals, including some species of fish. It makes up the normally visible part of the tooth, covering the crown. The other major tissues are dentin, cementum, and dental pulp. It is a very hard, white to off-white, highly mineralised substance that acts as a barrier to protect the tooth but can become susceptible to degradation, especially by acids from food and drink. In rare circumstances enamel fails to form, leaving the underlying dentin exposed on the surface.

<span class="mw-page-title-main">Dental implant</span> Surgical component that interfaces with the bone of the jaw

A dental implant is a prosthesis that interfaces with the bone of the jaw or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis or to act as an orthodontic anchor. The basis for modern dental implants is a biological process called osseointegration, in which materials such as titanium or zirconia form an intimate bond to the bone. The implant fixture is first placed so that it is likely to osseointegrate, then a dental prosthetic is added. A variable amount of healing time is required for osseointegration before either the dental prosthetic is attached to the implant or an abutment is placed which will hold a dental prosthetic/crown.

<span class="mw-page-title-main">Dental alveolus</span> Tooth socket

Dental alveoli are sockets in the jaws in which the roots of teeth are held in the alveolar process with the periodontal ligament. The lay term for dental alveoli is tooth sockets. A joint that connects the roots of the teeth and the alveolus is called gomphosis. Alveolar bone is the bone that surrounds the roots of the teeth forming bone sockets.

<span class="mw-page-title-main">Human tooth development</span> Process by which teeth form

Tooth development or odontogenesis is the complex process by which teeth form from embryonic cells, grow, and erupt into the mouth. For human teeth to have a healthy oral environment, all parts of the tooth must develop during appropriate stages of fetal development. Primary (baby) teeth start to form between the sixth and eighth week of prenatal development, and permanent teeth begin to form in the twentieth week. If teeth do not start to develop at or near these times, they will not develop at all, resulting in hypodontia or anodontia.

<span class="mw-page-title-main">Regenerative medicine</span> Field of medicine involved in regenerating tissues

Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.

<span class="mw-page-title-main">Dental follicle</span>

The dental follicle, also known as dental sac, is made up of mesenchymal cells and fibres surrounding the enamel organ and dental papilla of a developing tooth. It is a vascular fibrous sac containing the developing tooth and its odontogenic organ. The dental follicle (DF) differentiates into the periodontal ligament. In addition, it may be the precursor of other cells of the periodontium, including osteoblasts, cementoblasts and fibroblasts. They develop into the alveolar bone, the cementum with Sharpey's fibers and the periodontal ligament fibers respectively. Similar to dental papilla, the dental follicle provides nutrition to the enamel organ and dental papilla and also have an extremely rich blood supply.

<span class="mw-page-title-main">Polyphyodont</span> Animal whose teeth are continually replaced

A polyphyodont is any animal whose teeth are continually replaced. In contrast, diphyodonts are characterized by having only two successive sets of teeth.

<span class="mw-page-title-main">Animal tooth development</span>

Tooth development or odontogenesis is the process in which teeth develop and grow into the mouth. Tooth development varies among species.

<span class="mw-page-title-main">Nova Southeastern University College of Dental Medicine</span>

The Nova Southeastern University College of Dental Medicine is the dental school of Nova Southeastern University. It is located in Fort Lauderdale, Florida, United States. When it opened in 1997, it was the first new dental school to open in the United States in 24 years. It is the largest dental school in Florida. The school is accredited by the American Dental Association.

<span class="mw-page-title-main">Oral microbiology</span>

Oral microbiology is the study of the microorganisms (microbiota) of the oral cavity and their interactions between oral microorganisms or with the host. The environment present in the human mouth is suited to the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature. Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.

Dental pertains to the teeth, including dentistry. Topics related to the dentistry, the human mouth and teeth include:

<span class="mw-page-title-main">Remineralisation of teeth</span>

Tooth remineralization is the natural repair process for non-cavitated tooth lesions, in which calcium, phosphate and sometimes fluoride ions are deposited into crystal voids in demineralised enamel. Remineralization can contribute towards restoring strength and function within tooth structure.

Dental pulp stem cells (DPSCs) are stem cells present in the dental pulp, which is the soft living tissue within teeth. DPSCs can be collected from dental pulp by means of a non-invasive practice. It can be performed with an adult after simple extraction or to the young after surgical extraction of wisdom teeth. They are pluripotent, as they can form embryoid body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. DPSCs can differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers. They can differentiate into many cell types, such as odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. DPSCs were found to be able to differentiate into adipocytes and neural-like cells. DPSC differentiation into osteogenic lines is enhanced in 3D condition and hypoxia. These cells can be obtained from postnatal teeth, wisdom teeth, and deciduous teeth, providing researchers with a non-invasive method of extracting stem cells. The different cell populations, however, differ in certain aspects of their growth rate in culture, marker gene expression and cell differentiation, although the extent to which these differences can be attributed to tissue of origin, function or culture conditions remains unclear. As a result, DPSCs have been thought of as an extremely promising source of cells used in endogenous tissue engineering.

In dentistry, enamel matrix derivative (EMD) is an extract of porcine fetal tooth material used to biomimetically stimulate the soft and hard tissues surrounding teeth to regrow following tissue destruction.

<span class="mw-page-title-main">Tooth</span> Hard, calcified structure found in the mouths of many vertebrates

A tooth is a hard, calcified structure found in the jaws of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.

<span class="mw-page-title-main">Dental avulsion</span> Medical condition

Dental avulsion is the complete displacement of a tooth from its socket in alveolar bone owing to trauma. Normally, a tooth is connected to the socket by the periodontal ligament. When a tooth is knocked out, the ligament is torn.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

<span class="mw-page-title-main">Gingival grafting</span>

Gingival grafting, also called gum grafting or periodontal plastic surgery, is a generic term for the performance of any of a number of periodontal surgical procedures in which the gum tissue is grafted. The aim may be to cover exposed root surfaces or merely to augment the band of keratinized tissue.

<span class="mw-page-title-main">Rena D'Souza</span> Clinician-scientist

Rena D'Souza is a clinician-scientist and the Director of the National Institute of Dental and Craniofacial Research. She was formerly the assistant vice president for academic affairs and education for health sciences at the University of Utah where she was also a Professor of Dentistry in the School of Dentistry and a Professor of Neurobiology and Anatomy in the School of Medicine.

References

  1. Normile, Dennis (3 August 2009). "Researchers Grow New Teeth in Mice". Science.
  2. "Stem cells extracted from urine used to 'grow teeth' - NHS". Archived from the original on 9 March 2017. Retrieved 23 March 2014.
  3. "Growing New Teeth in the Mouth Using Stem-Cell Dental Implants". PreScouter. 26 July 2015.
  4. Elsharkawy, Sherif; Al-Jawad, Maisoon; Pantano, Maria F.; Tejeda-Montes, Esther; Mehta, Khushbu; Jamal, Hasan; Agarwal, Shweta; Shuturminska, Kseniya; Rice, Alistair; Tarakina, Nadezda V.; Wilson, Rory M.; Bushby, Andy J.; Alonso, Matilde; Rodriguez-Cabello, Jose C.; Barbieri, Ettore; del Río Hernández, Armando; Stevens, Molly M.; Pugno, Nicola M.; Anderson, Paul; Mata, Alvaro (1 June 2018). "Protein disorder–order interplay to guide the growth of hierarchical mineralized structures". Nature Communications. 9 (1): 2145. Bibcode:2018NatCo...9.2145E. doi:10.1038/s41467-018-04319-0. PMC   5984621 . PMID   29858566.
  5. Dutt, Anuradha (September 2013). "Breakthrough dentistry". The Hindu.
  6. Brunton, P. A.; Davies, R. P. W.; Burke, J. L.; Smith, A.; Aggeli, A.; Brookes, S. J.; Kirkham, J. (August 2013). "Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial". British Dental Journal. 215 (4): E6. doi:10.1038/sj.bdj.2013.741. PMC   3813405 . PMID   23969679.