Guided wave testing

Last updated
This illustrates the difference in concept between conventional UT and guided wave testing (GWT). UT vs GWT.jpg
This illustrates the difference in concept between conventional UT and guided wave testing (GWT).

Guided wave testing (GWT) is a non-destructive evaluation method. The method employs acoustic waves that propagate along an elongated structure while guided by its boundaries. This allows the waves to travel a long distance with little loss in energy. Nowadays, GWT is widely used to inspect and screen many engineering structures, particularly for the inspection of metallic pipelines around the world. In some cases, hundreds of meters can be inspected from a single location. There are also some applications for inspecting rail tracks, rods and metal plate structures.

Contents

Although guided wave testing is also commonly known as guided wave ultrasonic testing (GWUT) or ultrasonic guided waves (UGWs) or long range ultrasonic testing (LRUT), it is fundamentally very different from conventional ultrasonic testing. The frequency used in the inspection depends on the thickness of the structure, but guided wave testing typically uses ultrasonic frequencies in the range of 10 kHz to several MHz. Higher frequencies can be used in some cases, but detection range is significantly reduced. In addition, the underlying physics of guided waves is more complex than bulk waves. Much of the theoretical background has been addressed in a separate article. In this article, the practical aspect of GWT will be discussed.

History

The study of guided waves propagating in a structure can be traced back to as early as the 1920s, mainly inspired by the field of seismology. Since then, there has been an increased effort on the analytical study of guided wave propagation in cylindrical structures. It was only in the early 1990s that guided wave testing was considered as a practical method for the non-destructive testing of engineering structures. Today, GWT is applied as an integrated health monitoring program in the oil, gas and chemical industries.

How it works (pipeline inspections)

A technician (right) performs a Guided Wave test. An example of pipeline inspection using guided wave testing (GWT). Mechanical stress wave is generated via transducer array mounted around the pipe surface. The electrical signal is driven by the portable electronic unit. After the collection, the result is displayed on the computer for further analysis. Guided wave testing GWT.jpg
A technician (right) performs a Guided Wave test. An example of pipeline inspection using guided wave testing (GWT). Mechanical stress wave is generated via transducer array mounted around the pipe surface. The electrical signal is driven by the portable electronic unit. After the collection, the result is displayed on the computer for further analysis.
A typical example of the GWT data showing both the A-scan type (bottom) and the C-scan type (top) results. The green band indicates the position of the transducer array. Typical GWT result.jpg
A typical example of the GWT data showing both the A-scan type (bottom) and the C-scan type (top) results. The green band indicates the position of the transducer array.

Unlike conventional ultrasonics, there are an infinite number of guided wave modes that exist for a pipe geometry, and they can be generally grouped into three families, namely the torsional, longitudinal and flexural modes. The acoustic properties of these wave modes are a function of the pipe geometry, the material and the frequency. Predicting these properties of the wave modes often relies on heavy mathematical modeling which is typically presented in graphical plots called dispersion curves.

In the guided wave testing of pipelines, an array of low frequency transducers is attached around the circumference of the pipe to generate an axially symmetric wave that propagates along the pipe in both the forward and backward directions of the transducer array. The torsional wave mode is most commonly used, although there is limited use of the longitudinal mode. The equipment operates in a pulse-echo configuration where the array of transducers is used for both the excitation and detection of the signals.

At a location where there is a change of cross-section or a change in local stiffness of the pipe, an echo is generated. Based on the arrival time of the echoes, and the predicted speed of the wave mode at a particular frequency, the distance of a feature in relation to the position of the transducer array can be accurately calculated. GWT uses a system of distance amplitude curves (DAC) to correct for attenuation and amplitude drops when estimating the cross-section change (CSC) from a reflection at a certain distance. The DACs are usually calibrated against a series of echoes with known signal amplitude such as weld echoes.

Once the DAC levels are set, the signal amplitude correlates well to the CSC of a defect. GWT does not measure the remaining wall thickness directly, but it is possible to group the defect severity in several categories. One method of doing this is to exploit the mode conversion phenomenon of the excitation signal where some energy of the axially symmetric wave mode is converted to the flexural modes at a pipe feature. The amount of mode conversion provides an accurate estimate of the circumferential extent of the defect, and together with the CSC, operators could establish the severity category.

A typical result of GWT is displayed in an A-scan style with the reflection amplitude against the distance from the transducer array position. In the past few years, some advanced systems have started to offer C-scan type results where the orientation of each feature can be easily interpreted. This has shown to be extremely useful when inspecting large size pipelines.

Guided wave focusing

As well as incorporating C-scan type results, active focusing capacity can also be achieved by GWT utilising flexural wave modes. This gives two main advantages; firstly the signal to noise ratio (SNR) of a defect echo can be enhanced, secondly it can be used as an additional tool to help discriminate between 'real' and 'false' indications. However, there are disadvantages associated with this technique; firstly, the defect location must be known before the focusing can be applied, secondly, the separate data set required for the active focusing technique can also significantly reduce the time and cost efficiency of GWT.

Flexural wave modes have sinusoidal variation in their displacement pattern around the circumference, in integer values ranging from 1 to Infinity. Active focusing involves the transmission of multiple flexural wave modes, with time and amplitude corrections applied, in such a way that a circumferential node from each wave mode will arrive at the target position at the same time, the same circumferential position and with the same phase, causing constructive interference. At other circumferential positions the circumferential nodes of the flexural wave modes will arrive out of phase with each other and will interfere destructively. Adjusting the excitation conditions can rotate this focal spot around the pipes circumference. Comparing the response from different circumferential positions can allow the operator to more accurately predict the circumferential position and extent of a defect.

The active focusing technique gives information on the circumferential distribution of metal loss defects. The two defects shown both represent the same cross sectional loss, however, the defect at -3m is much more severe as it fully penetrates the pipe wall. Typical Guided Wave Focusing Result 1.png
The active focusing technique gives information on the circumferential distribution of metal loss defects. The two defects shown both represent the same cross sectional loss, however, the defect at -3m is much more severe as it fully penetrates the pipe wall.

As previously mentioned, the focusing technique can also be used to help discriminate between 'real' and 'false' indications, a 'false' indication being a received signal that does not directly correspond to the position of a defect; such as those from reverberations or from incomplete cancellation of unwanted wave modes. If a 'false' indication is present in the A-scan data, it will also be re-represented in any C-scan type results as this type of processing uses the same original data. As active focusing involves a separate data collection, focusing at the position of a 'false' indication will give a negative result, whereas focusing on a 'true' indication will give a positive result. Therefore, the active focusing technique can help overcome the propensity of 'false calls' generated by guided wave testing systems.

Features

Advantages

  1. Rapid screening for in-service degradation (Long range inspection) – potential to achieve hundreds of meters of inspection range.
  2. Detection of internal or external metal loss
  3. Reduction in costs of gaining access – insulated line with minimal insulation removal, corrosion under supports without need for lifting, inspection at elevated locations with minimal need for scaffolding, and inspection of road crossings and buried pipes.
  4. Data is fully recorded.
  5. Fully automated data collection protocols.

Disadvantages

  1. Interpretation of data is highly operator dependent.
  2. Difficult to find small pitting defects.
  3. Not very effective at inspecting areas close to accessories.
  4. Can't find gradual wall loss.
  5. Needs good procedure

List of standards

British Standards (BSI)
ASTM International (ASTM)

Related Research Articles

<span class="mw-page-title-main">Ultrasound</span> Sound waves with frequencies above the human hearing range

Ultrasound is sound with frequencies greater than 20 kilohertz. This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound. Ultrasonic devices operate with frequencies from 20 kHz up to several gigahertz.

<span class="mw-page-title-main">Medical ultrasound</span> Diagnostic and therapeutic technique

Medical ultrasound includes diagnostic techniques using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics or to generate an informative audible sound. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography, or echography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. The machine used is called an ultrasound machine, a sonograph or an echograph. The visual image formed using this technique is called an ultrasonogram, a sonogram or an echogram.

<span class="mw-page-title-main">Nondestructive testing</span> Evaluating the properties of a material, component, or system without causing damage

Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.

Laser-ultrasonics uses lasers to generate and detect ultrasonic waves. It is a non-contact technique used to measure materials thickness, detect flaws and carry out materials characterization. The basic components of a laser-ultrasonic system are a generation laser, a detection laser and a detector.

<span class="mw-page-title-main">Ultrasonic testing</span> Non-destructive material testing using ultrasonic waves

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse waves with centre frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion and erosion. Ultrasonic testing is extensively used to detect flaws in welds.

<span class="mw-page-title-main">Phased array ultrasonics</span> Testing method

Phased array ultrasonics (PA) is an advanced method of ultrasonic testing that has applications in medical imaging and industrial nondestructive testing. Common applications are to noninvasively examine the heart or to find flaws in manufactured materials such as welds. Single-element probes, known technically as monolithic probes, emit a beam in a fixed direction. To test or interrogate a large volume of material, a conventional probe must be physically scanned to sweep the beam through the area of interest. In contrast, the beam from a phased array probe can be focused and swept electronically without moving the probe. The beam is controllable because a phased array probe is made up of multiple small elements, each of which can be pulsed individually at a computer-calculated timing. The term phased refers to the timing, and the term array refers to the multiple elements. Phased array ultrasonic testing is based on principles of wave physics, which also have applications in fields such as optics and electromagnetic antennae.

<span class="mw-page-title-main">Time-of-flight diffraction ultrasonics</span>

Time-of-flight diffraction (TOFD) method of ultrasonic testing is a sensitive and accurate method for the nondestructive testing of welds for defects. TOFD originated from tip diffraction techniques which were first published by Silk and Liddington in 1975 which paved the way for TOFD. Later works on this technique are given in a number of sources which include Harumi et al. (1989), Avioli et al. (1991), and Bray and Stanley (1997).

<span class="mw-page-title-main">Rail inspection</span>

Rail inspection is the practice of examining rail tracks for flaws that could lead to catastrophic failures. According to the United States Federal Railroad Administration Office of Safety Analysis, track defects are the second leading cause of accidents on railways in the United States. The leading cause of railway accidents is attributed to human error. The contribution of poor management decisions to rail accidents caused by infrequent or inadequate rail inspection is significant but not reported by the FRA, only the NTSB. Every year, North American railroads spend millions of dollars to inspect the rails for internal and external flaws. Nondestructive testing (NDT) methods are used as preventive measures against track failures and possible derailment.

<span class="mw-page-title-main">Scanning acoustic microscope</span>

A scanning acoustic microscope (SAM) is a device which uses focused sound to investigate, measure, or image an object. It is commonly used in failure analysis and non-destructive evaluation. It also has applications in biological and medical research. The semiconductor industry has found the SAM useful in detecting voids, cracks, and delaminations within microelectronic packages.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

<span class="mw-page-title-main">Electromagnetic acoustic transducer</span>

An electromagnetic acoustic transducer (EMAT) is a transducer for non-contact acoustic wave generation and reception in conducting materials. Its effect is based on electromagnetic mechanisms, which do not need direct coupling with the surface of the material. Due to this couplant-free feature, EMATs are particularly useful in harsh, i.e., hot, cold, clean, or dry environments. EMATs are suitable to generate all kinds of waves in metallic and/or magnetostrictive materials. Depending on the design and orientation of coils and magnets, shear horizontal (SH) bulk wave mode, surface wave, plate waves such as SH and Lamb waves, and all sorts of other bulk and guided-wave modes can be excited. After decades of research and development, EMAT has found its applications in many industries such as primary metal manufacturing and processing, automotive, railroad, pipeline, boiler and pressure vessel industries, in which they are typically used for nondestructive testing (NDT) of metallic structures.

<span class="mw-page-title-main">Lamb waves</span>

Lamb waves propagate in solid plates or spheres. They are elastic waves whose particle motion lies in the plane that contains the direction of wave propagation and the direction perpendicular to the plate. In 1917, the English mathematician Horace Lamb published his classic analysis and description of acoustic waves of this type. Their properties turned out to be quite complex. An infinite medium supports just two wave modes traveling at unique velocities; but plates support two infinite sets of Lamb wave modes, whose velocities depend on the relationship between wavelength and plate thickness.

Thermographic inspection refers to the nondestructive testing (NDT) of parts, materials or systems through the imaging of the temperature fields, gradients and/or patterns ("thermograms") at the object's surface. It is distinguished from medical thermography by the subjects being examined: thermographic inspection generally examines inanimate objects, while medical thermography generally examines living organisms. Generally, thermographic inspection is performed using an infrared sensor.

Acoustic microscopy is microscopy that employs very high or ultra high frequency ultrasound. Acoustic microscopes operate non-destructively and penetrate most solid materials to make visible images of internal features, including defects such as cracks, delaminations and voids.

Hot plate welding, also called heated tool welding, is a thermal welding technique for joining thermoplastics. A heated tool is placed against or near the two surfaces to be joined in order to melt them. Then, the heat source is removed, and the surfaces are brought together under pressure. Hot plate welding has relatively long cycle times, ranging from 10 seconds to minutes, compared to vibration or ultrasonic welding. However, its simplicity and ability to produce strong joints in almost all thermoplastics make it widely used in mass production and for large structures, like large-diameter plastic pipes. Different inspection techniques are implemented in order to identify various discontinuities or cracks.

<span class="mw-page-title-main">Atomic force acoustic microscopy</span>

Atomic force acoustic microscopy (AFAM) is a type of scanning probe microscopy (SPM). It is a combination of acoustics and atomic force microscopy. The principal difference between AFAM and other forms of SPM is the addition of a transducer at the bottom of the sample which induces longitudinal out-of-plane vibrations in the specimen. These vibrations are sensed by a cantilever and tip called a probe. The figure shown here is the clear schematic of AFAM principle here B is the magnified version of the tip and sample placed on the transducer and tip having some optical coating generally gold coating to reflect the laser light on to the photodiode.

Microwave imaging is a science which has been evolved from older detecting/locating techniques in order to evaluate hidden or embedded objects in a structure using electromagnetic (EM) waves in microwave regime. Engineering and application oriented microwave imaging for non-destructive testing is called microwave testing, see below.

Robotic non-destructive testing (NDT) is a method of inspection used to assess the structural integrity of petroleum, natural gas, and water installations. Crawler-based robotic tools are commonly used for in-line inspection (ILI) applications in pipelines that cannot be inspected using traditional intelligent pigging tools.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

A variety of non-destructive examination (NDE) techniques are available for inspecting plastic welds. Many of these techniques are similar to the ones used for inspecting metal welds. Traditional techniques include visual testing, radiography, and various ultrasonic techniques. Advanced ultrasonic techniques such as time of flight diffraction (TOFD) and phased-array ultrasonics (PAUT) are being increasingly studied and used for inspecting plastic pipeline welds. Research in the use of optical coherence tomography (OCT) and microwave reflectrometry has also been conducted.

References